Background: The aim of this study was to evaluate the predictive power of the absorbed dose to kidneys after the first course of treatment with [Lu]-DOTA-TATE for neuroendocrine tumors (NETs) on the cumulative kidney absorbed dose after 3 or 4 cycles of treatment. Post-treatment scans (PTS) are acquired after each cycle of peptide receptor radionuclide therapy (PRRT) with [Lu]-DOTA-TATE for personalized radiation dosimetry in order to ensure a cumulative absorbed dose to kidneys under a safety threshold of 25 Gy. One hundred eighty-seven patients who completed treatment with [Lu]-DOTA-TATE and underwent PTS for dosimetry calculation were included in this retrospective study. The correlation between the cumulative absorbed dose to kidneys after the completion of treatment and the absorbed dose after the first cycle(s) was studied. Multilinear regression analysis was done to predict the cumulative absorbed dose to the kidneys of the subsequent cycles, and an algorithm for the follow up of kidney absorbed dose is proposed.
Results: Patients whose absorbed dose to kidneys after the first cycle of treatment is below 5.6 Gy can receive four cycles of treatment with a cumulative dose less than 25 Gy (p < 0.1). For the other patients, the cumulative absorbed dose after 3 or 4 cycles of treatment can be predicted after the second cycle of treatment to allow for an early decision regarding the number of cycles that may be given.
Conclusions: The follow up of kidney absorbed dose after PRRT can be simplified with the algorithm presented in this study, reducing by one-third the number of post-treatment scans and reducing hospitalization time for more than half of the treatment cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286905 | PMC |
http://dx.doi.org/10.1186/s40658-018-0234-7 | DOI Listing |
Biomater Sci
January 2025
National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin , chlorin and phthalocyanine, as those for radical polymerization in the transparency window of biotissues.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFEur J Cancer
November 2024
David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
Purpose: MAK683, a first-in-class and highly selective allosteric inhibitor of the embryonic ectoderm development subunit of polycomb repressive complex 2, has shown sustained antitumor activity in tumor xenograft models. This first-in-human phase 1/2 study evaluated the safety, pharmacokinetics (PK), and clinical activity of single-agent MAK683 in advanced malignancies.
Methods: MAK683 was administered fasted once daily or twice daily continuously in 28-day treatment cycles.
Endocr Metab Immune Disord Drug Targets
January 2025
DDR Research Clinic, Caserta, Italy.
Background: Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.
View Article and Find Full Text PDFSci Rep
January 2025
Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girl Branch), Cairo, Egypt.
Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!