NENs are a heterogeneous family of tumors of challenging diagnosis and clinical management. Their incidence and prevalence continue to rise across all sites, stages and grades. Although improved diagnostic techniques have led to earlier detection and stage migration, the improved prognosis documented over time for advanced gastrointestinal and pancreatic neuroendocrine tumors also reflect improvements in therapy. The aim of this guideline is to update practical recommendations for the diagnosis and treatment of gastroenteropancreatic and lung NENs. Diagnostic procedures, histological classification and therapeutic options are briefly discussed, including surgery, liver-directed therapy, peptide receptor radionuclide therapy, and systemic hormonal, cytotoxic or targeted therapy, and treatment algorithms are provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339660PMC
http://dx.doi.org/10.1007/s12094-018-1980-7DOI Listing

Publication Analysis

Top Keywords

diagnosis treatment
8
treatment gastroenteropancreatic
8
seom clinical
4
clinical guidelines
4
guidelines diagnosis
4
gastroenteropancreatic bronchial
4
bronchial neuroendocrine
4
neuroendocrine neoplasms
4
neoplasms nens
4
nens 2018
4

Similar Publications

Background: Anaplastic thyroid cancer (ATC) is a highly lethal disease, often diagnosed with advanced locoregional and distant metastases, resulting in a median survival of just 3-5 months. This study determines the stratified effectiveness of baseline treatments in all combinations, enabling precise prognoses prediction and establishing benchmarks for advanced therapeutic options.

Methods: The study extracted a cohort of pathologically confirmed ATC patients from the Surveillance, Epidemiology, and End Results program.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a frequent disease from which approximately 8% of individuals aged 40 years and above suffer. The prevalence increases up to fivefold as age advances. Following an introduction including the etiology, measurement, characteristic features and classification of COPD, this article presents the consensus recommendations of the German Working Group on Pneumology in Older Patients.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

In Vivo Confocal Microscopy for Automated Detection of Meibomian Gland Dysfunction: A Study Based on Deep Convolutional Neural Networks.

J Imaging Inform Med

January 2025

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Disease, Shanghai, 200080, China.

The objectives of this study are to construct a deep convolutional neural network (DCNN) model to diagnose and classify meibomian gland dysfunction (MGD) based on the in vivo confocal microscope (IVCM) images and to evaluate the performance of the DCNN model and its auxiliary significance for clinical diagnosis and treatment. We extracted 6643 IVCM images from the three hospitals' IVCM database as the training set for the DCNN model and 1661 IVCM images from the other two hospitals' IVCM database as the test set to examine the performance of the model. Construction of the DCNN model was performed using DenseNet-169.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!