The microRNA (miR)‑138‑5p affects the chemotherapeutic sensitivity of several human cancer types. In the present study, the expression and regulatory mechanisms of miR‑138‑5p were investigated in the gastric cancer cell line SGC7901 and its cisplatin‑resistant derivative SGC7901/DDP. Gene microarray and reverse transcription‑quantitative polymerase chain reaction analyses revealed that miR‑138‑5p was expressed at significantly lower levels in SGC7901/DDP compared with SGC7901 cells. Using computational predictive algorithms, two proteins involved in the nuclear excision repair pathway were identified, excision repair cross‑complementing (ERCC)1 and ERCC4, as putative miR‑138‑5p target genes. Western blot analysis confirmed that ERCC1 and ERCC4 expression levels were inversely proportional to miR‑138‑5p levels in SGC7901 and SGC7901/DDP cells. Furthermore, ERCC1 and ERCC4 were upregulated in SGC7901 cells expressing miR‑138‑5p‑targeting short hairpin RNA and, conversely, downregulated in SGC7901/DDP cells overexpressing miR‑138‑5p, confirming that this miRNA regulates ERCC protein levels. Notably, miR‑138‑5p silencing enhanced the cisplatin resistance of SGC7901 cells, while miR‑138‑5p overexpression partially reversed the cisplatin resistance of SGC7901/DDP cells. Taken together, these data suggest that miR‑138‑5p regulates the sensitivity of gastric cancer cells to cisplatin, possibly by modulating expression of the DNA repair proteins ERCC1 and ERCC4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2018.6907 | DOI Listing |
Int J Mol Sci
December 2024
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Int Immunopharmacol
September 2024
Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China. Electronic address:
Background: Harmine has many pharmacological activities and has been found to significantly inhibit the fibrosis of keloid fibroblasts. DNA damage repair (DDR) is essential to prevent fibrosis. This study aimed to investigate the effects of harmine on pulmonary fibrosis and its underlying mechanisms.
View Article and Find Full Text PDFbioRxiv
January 2024
Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America.
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.
View Article and Find Full Text PDFBiomarkers
December 2023
Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India.
Background: Occupational pesticides exposure has raised health concerns due to genotoxicity and accumulation of DNA damage. Polymorphisms in genes encoding enzymes involved in nucleotide excision repair (NER) may affect the individual's susceptibility to pesticide toxicity.
Methods: This study evaluates the association of excision repair cross complementation group 1 ( (8092 C > A, 3'UTR, rs3212986) and (19007 C > T, Asn118Asn, rs11615) (1244 G > A, Arg415Gln, rs1800067) and (3507 G > C, Asp1104His, rs17655) polymorphisms with pesticide-induced DNA damage in North-West Indian agricultural workers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!