Upregulated IGF‑1 in the lungs of asthmatic mice originates from alveolar macrophages.

Mol Med Rep

Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China.

Published: February 2019

Asthma is characterized by inflammation and remodeling of the airways. Insulin‑like growth factor-1 (IGF‑1) serves an important role in the repair of lung tissue injury and airway remodeling by elevating collagen and elastin content, increasing the thickness of smooth muscle and promoting the proliferation of lung epithelial and interstitial cells, as well as fibroblasts; however, the content of IGF‑1 and its cellular origin in the lungs of patients with asthma remain unknown. In the present study, a mouse model of asthma was constructed. Following isolation of alveolar macrophages (AMs), the content of IGF‑1 in lung tissue and bronchoalveolar lavage fluid (BALF) was detected by ELISA. The proliferation and phagocytosis of alveolar epithelial cells (AECs) stimulated by IGF‑1 were detected by Cell Counting Kit‑8 method and flow cytometry, respectively. In the present study, IGF‑1 was upregulated in the lung tissues of asthmatic mice, and the content of IGF‑1 in BALF was also elevated. Depletion of AMs by treating mice with 2‑chloroadenosine via nose dripping reversed the increase of IGF‑1 by 80% in lung tissues and by ~100% in BALF of asthmatic mice, suggesting that elevated IGF‑1 in asthmatic mice predominantly originated from AMs. As IGF‑1 promotes the proliferation and phagocytosis of AECs, AM‑derived IGF‑1 may serve an important role in the regulation of airway inflammation and remodeling in asthmatic mice.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2018.9726DOI Listing

Publication Analysis

Top Keywords

asthmatic mice
20
content igf‑1
12
igf‑1
9
inflammation remodeling
8
lung tissue
8
proliferation phagocytosis
8
lung tissues
8
mice
6
asthmatic
5
lung
5

Similar Publications

Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease.

Mol Ther

January 2025

Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia. Electronic address:

Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in COPD is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1, uPAR) that induced collagen and airway remodeling.

View Article and Find Full Text PDF

Postprandial parasympathetic signals promote lung type 2 immunity.

Neuron

January 2025

PTN Graduate Program, Peking University Third Hospital Cancer Center, Center for Life Sciences, IDG/McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking Union Medical College Hospital, Beijing 100730, China. Electronic address:

Lung type 2 immunity protects against pathogenic infection, but its dysregulation causes asthma. Although it has long been observed that symptoms of asthmatic patients often become exaggerated following food intake, the pathophysiological mechanism underlying this postprandial phenomenon is incompletely understood. Here, we report that lung type 2 immunity in mice is enhanced after feeding, which correlates with parasympathetic activation.

View Article and Find Full Text PDF

Role of GLCCI1 in inhibiting PI3K-induced NLRP3 inflammasome activation in asthma.

Chin Med J Pulm Crit Care Med

December 2024

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.

Background: Glucocorticoid-induced transcript 1 (GLCCI1) has been reported to be associated with the efficiency of inhaled glucocorticoids in patients with asthma. This study aimed to investigate the role of GLCCI1 in the regulation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) by the phosphatidylinositol 3-kinase (PI3K) pathway in the pathogenesis of allergic asthma.

Methods: The expression levels of genes encoding GLCCI1, NLRP3 inflammasome components, and PI3K pathway-related indicators were detected in cells isolated from induced sputum from patients with asthma and healthy controls.

View Article and Find Full Text PDF

Establishment of a mouse model of allergic asthma sensitized and triggered with PM2.5.

Int J Environ Health Res

January 2025

Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.

To establish a mouse model of asthma sensitized and challenged with PM2.5 extract, 48 female BALB/c mice were included in this analysis. They were divided into six groups: normal control, ovalbumin (OVA) control, three PM2.

View Article and Find Full Text PDF

Formaldehyde (FA) is a ubiquitous indoor air pollutant emitted from construction, consumer, and combustion-related products, and ozone-initiated reactions with reactive organic volatiles. The derivation of an indoor air quality guideline for FA by World Health Organization in 2010 did not find convincing evidence for bronchoconstriction-related reactions as detrimental lung function. Causal relationship between FA and asthma has since been advocated in meta-analyses of selected observational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!