Objectives: To determine how the load of rilpivirine-resistant variants (mutational load) influences the virological response (VR) of HIV-1-infected patients to a rilpivirine-based first-line regimen.

Patients And Methods: Four hundred and eighty-nine patients infected with HIV-1 whose reverse transcriptase gene had been successfully resistance genotyped using next-generation sequencing were given a first-line regimen containing rilpivirine. Variables associated with the VR at 12 months were identified using a logistic model. The results were used to build a multivariate model for each mutational load threshold and the R2 variations were analysed to identify the mutational load threshold that best predicted the VR.

Results: The mutational load at baseline was the only variable linked to the VR at 12 months (P  < 0.01). The VR at 12 months decreased from 96.9% to 83.4% when the mutational load was >1700 copies/mL and to 50% when the mutational load was > 9000 copies/mL. The threshold of 9000 copies/mL was associated with the VR at 12 months with an OR of 36.7 (95% CI 4.7-285.1). The threshold of 1700 copies/mL was associated with the VR at 12 months with an OR of 7.2 (95% CI 1.4-36.8).

Conclusions: There is quantifiable evidence that determining a mutational load threshold can be used to identify those patients on a first-line regimen containing rilpivirine who are at risk of virological failure. The clinical management of HIV-infected patients can be improved by evaluating the frequency of mutant variants at a threshold of < 20% together with the plasma HIV-1 viral load at the time of resistance genotyping.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dky495DOI Listing

Publication Analysis

Top Keywords

mutational load
28
associated 12 months
12
load threshold
12
load
8
virological response
8
first-line regimen
8
regimen rilpivirine
8
mutational
6
threshold
6
impact mutational
4

Similar Publications

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.

View Article and Find Full Text PDF

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Cytomegalovirus (CMV) infection remains one of the most common and challenging post-transplant infections. Children with inborn errors of immunity (IEI) and T-cell dysfunction are at high risk for CMV infection, which can be complicated by refractory and/or resistant cases. This case describes a Nepalese girl with MHC class II deficiency, who presented at 3 months of age with CMV and Pneumocystis jirovecii pneumonia.

View Article and Find Full Text PDF

Enhancing public health outcomes with AI-powered clinical surveillance: Precise detection of COVID-19 variants using qPCR and nanopore sequencing.

J Infect Public Health

January 2025

Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:

Background: We aimed to evaluate the efficacy of integrating the Varia5 multiplex assay (qPCR) and whole genome sequencing (WGS) for monitoring SARS-CoV-2, focusing on their overall performance in identifying various virus variants.

Methods: This study included 140 naso-pharyngeal swab samples from individuals with suspected COVID-19. We utilized our self-developed Varia5 multiplex assay, which targets five viral genes linked to COVID-19 mutations, in conjunction with comprehensive genomic analysis performed through whole genome sequencing (WGS) using the Oxford Nanopore system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!