Distributed data networks enable large-scale epidemiologic studies, but protecting privacy while adequately adjusting for a large number of covariates continues to pose methodological challenges. Using 2 empirical examples within a 3-site distributed data network, we tested combinations of 3 aggregate-level data-sharing approaches (risk-set, summary-table, and effect-estimate), 4 confounding adjustment methods (matching, stratification, inverse probability weighting, and matching weighting), and 2 summary scores (propensity score and disease risk score) for binary and time-to-event outcomes. We assessed the performance of combinations of these data-sharing and adjustment methods by comparing their results with results from the corresponding pooled individual-level data analysis (reference analysis). For both types of outcomes, the method combinations examined yielded results identical or comparable to the reference results in most scenarios. Within each data-sharing approach, comparability between aggregate- and individual-level data analysis depended on adjustment method; for example, risk-set data-sharing with matched or stratified analysis of summary scores produced identical results, while weighted analysis showed some discrepancies. Across the adjustment methods examined, risk-set data-sharing generally performed better, while summary-table and effect-estimate data-sharing more often produced discrepancies in settings with rare outcomes and small sample sizes. Valid multivariable-adjusted analysis can be performed in distributed data networks without sharing of individual-level data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438804PMC
http://dx.doi.org/10.1093/aje/kwy265DOI Listing

Publication Analysis

Top Keywords

distributed data
16
data networks
12
adjustment methods
12
individual-level data
12
multivariable-adjusted analysis
8
summary-table effect-estimate
8
summary scores
8
data analysis
8
risk-set data-sharing
8
analysis
7

Similar Publications

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Body composition abnormalities are prognostic markers in several types of cancer, including colorectal cancer (CRC). Using our data distribution on body composition assessments and classifications could improve clinical evaluations and support population-specific opportune interventions. This study aimed to evaluate the distribution of body composition from computed tomography and assess the associations with overall survival among patients with CRC.

View Article and Find Full Text PDF

While bacille-calmette-guerin (BCG) vaccination is one of the recommended strategies for preventing tuberculosis (TB), its coverage is low in several countries, including Ethiopia. This study investigated the spatial co-distribution and drivers of TB prevalence and low BCG coverage in Ethiopia. This ecological study was conducted using data from a national TB prevalence survey and the Ethiopian demographic and health survey (EDHS) to map the spatial co-distribution of BCG vaccination coverage and TB prevalence.

View Article and Find Full Text PDF

Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!