Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cognitive deficit is thought to represent, at least in part, genetic mechanisms of risk for schizophrenia, with recent evidence from statistical modelling of twin data suggesting direct causality from the former to the latter. However, earlier evidence was based on inferences from twin not molecular genetic data and it is unclear how much genetic influence 'passes through' cognition on the way to diagnosis. Thus, we included direct measurements of genetic risk (e.g. schizophrenia polygenic risk scores) in causation models to assess the extent to which cognitive deficit mediates some of the effect of polygenic risk scores on the disorder. Causal models of family data tested relationships among key variables and allowed parsing of genetic variance components. Polygenic risk scores were calculated from summary statistics from the current largest genome-wide association study of schizophrenia and were represented as a latent trait. Cognition was also modelled as a latent trait. Participants were 1313 members of 1078 families: 416 patients with schizophrenia, 290 unaffected siblings, and 607 controls. Modelling supported earlier findings that cognitive deficit has a putatively causal role in schizophrenia. In total, polygenic risk score explained 8.07% [confidence interval (CI) 5.45-10.74%] of schizophrenia risk in our sample. Of this, more than a third (2.71%, CI 2.41-3.85%) of the polygenic risk score influence was mediated through cognition paths, exceeding the direct influence of polygenic risk score on schizophrenia risk (1.43%, CI 0.46-3.08%). The remainder of the polygenic risk score influence (3.93%, CI 2.37-4.48%) reflected reciprocal causation between schizophrenia liability and cognition (e.g. mutual influences in a cyclical manner). Analysis of genetic variance components of schizophrenia liability indicated that 26.87% (CI 21.45-32.57%) was associated with cognition-related pathways not captured by polygenic risk score. The remaining variance in schizophrenia was through pathways other than cognition-related and polygenic risk score. Although our results are based on inference through statistical modelling and do not provide an absolute proof of causality, we find that cognition pathways mediate a significant part of the influence of cumulative genetic risk on schizophrenia. We estimate from our model that 33.51% (CI 27.34-43.82%) of overall genetic risk is mediated through influences on cognition, but this requires further studies and analyses as the genetics of schizophrenia becomes better characterized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359897 | PMC |
http://dx.doi.org/10.1093/brain/awy279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!