An achiral organic tecton bearing four coordinating sites of the pyridyl type leads to the formation of iso-structural 3D helical coordination polymers when combined with Co(SCN) and Fe(SCN) achiral neutral complexes. Their formation occurs during the self-assembly process in the solid state, which leads to crystals composed of homochiral coordination polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc08877bDOI Listing

Publication Analysis

Top Keywords

achiral organic
8
organic tecton
8
coordination polymers
8
molecular tectonics
4
tectonics rigid
4
rigid achiral
4
tecton chiral
4
chiral coordination
4
coordination networks
4
networks achiral
4

Similar Publications

Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.

View Article and Find Full Text PDF

Peptide-induced chirality transfer and circularly polarized luminescence in achiral BODIPY emitters halogen bonding.

Chem Commun (Camb)

December 2024

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

This study explores peptide-mediated chiral induction and circularly polarized luminescence (CPL) in achiral BODIPY dyes, leading to a high value of up to -1.2 × 10 through orthogonal halogen bonding and hydrogen bonding. It unravels the impact of these combined directional interactions on the formation of heterostructures and their thermal stability.

View Article and Find Full Text PDF

The nanoscale chiral arrangement in a bicomponent organic material system comprising donor and acceptor small molecules is shown to depend on the thickness of a film that is responsive to chiral light in an optoelectronic device. In this bulk heterojunction, a previously unreported chiral bis(diketopyrrolopyrrole) derivative was combined with an achiral non-fullerene acceptor. The optical activity of the chiral compound is dramatically different in the pure material and the composite, showing how the electron acceptor influences the donor's arrangement compared with the pure molecule.

View Article and Find Full Text PDF

Organic Ligand Exchange: The Chiral Structure-Property Regulation of Cuprous Halides.

Inorg Chem

December 2024

College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.

The strategy of organic ligand exchange is proposed to tune the optical properties of organic-inorganic hybrid cuprous halides. In this work, the chiral ligand (S)-(-)-2,2'-bis(di--tolylphosphino)-1,1'-binaphthyl ((S)-Tol-BINAP) and achiral triphenylphosphine (PPh) are introduced into cuprous halides CuX-PPh-[(S)-Tol-BINAP] (X = Cl, Br, I) through organic ligand exchange. As a result, the mixed organic ligands can enhance second harmonic generation (SHG) and aggregation-induced emission (AIE) optical properties.

View Article and Find Full Text PDF

Enhanced Enantioselective Sensing of 1,1'-Bi-2-naphthol and Mandelic Acid by Proportional Fluorescence Sensor 3DOM Zn-MOF-74-l-Trp with Hierarchical Macro-Micropore Structure.

Inorg Chem

December 2024

Center of Advanced Analysis and Gene Sequencing, Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, P. R. China.

The enantioselective performance of porous chiral metal-organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!