Solid state NMR signals are very sensitive to the local environment of the observed nucleus; however, their interpretation is not straightforward. On the other hand, first-principles DFT calculations of NMR parameters can now be applied to periodic compounds to predict NMR parameters. Thus, ab initio calculations can help to interpret the NMR spectra exhibited by complex materials, to assign NMR lines to structural environments, and even to enlighten the environmental factors influencing the NMR parameters for a given nucleus. Both techniques have been applied to crystalline compounds of the KF-YF3 binary system, γ-K3YF6, K2YF5, KYF4, β-KY2F7 and α-KY3F10, which present a variety of YFn and KFm polyhedra. First, the structure of K2YF5 was refined in the Pnma space group and, for all compounds, atomic positions were optimized by DFT. The 19F, 89Y and 39K NMR spectra have been recorded and the measured NMR parameters are compared to those calculated from the first-principles DFT method, allowing unambiguous assignments of NMR lines to crystallographic sites. Linear correlations between the experimental δiso and calculated σiso values for the three nuclei are used to predict the theoretical 19F spectra of KYF4 (24 F sites) and β-KY2F7 (19 F sites) as well as the 39K spectrum of KYF4 (6 K sites). For 89Y and 39K, both computational and experimental results show a decrease of the isotropic chemical shift values when the cation coordination number increases. Above all, 89Y isotropic chemical shift values correlate with the number of K atoms present in the Y second coordination sphere. For 19F, the combination of isotropic chemical shift and chemical shift anisotropy allows for distinguishing four kinds of F environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt03241f | DOI Listing |
Brain Imaging Behav
January 2025
Macquarie Medical School, Macquarie University, Sydney, NSW, Australia.
Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China.
Background: The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential.
Objectives: The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV).
Front Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Magnetic Resonance Imaging, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China.
Purpose: Few data are available on the causality of cerebral artery fenestration (CAF) triggering cerebral infarction (CI) and this study aims to identify representative morphological features that can indicate risks.
Methods: A cohort comprising 89 patients diagnosed with CAF were enrolled from a total of 9,986 cranial MR angiographies. These patients were categorized into Infarction Group ( = 55) and Control Group ( = 34) according to infarction events.
Front Neurol
January 2025
Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
Objective: Recent studies have indicated a close relationship between intracranial arterial stenosis and white matter hyperintensities (WMHs), but few have reported on the correlation between the characteristics of intracranial arterial wall plaques and WMHs. The aim of this study was to comprehensively assess the correlation between intracranial atherosclerosis plaques and WMHs using 3.0T high-resolution magnetic resonance imaging (HR-MRI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!