β-Aminobutyric acid (BABA) pre-treatment has been shown to alter both biotic and abiotic stress responses. The present study extends this observation to acclimative UV-B-response, which has not been explored in this context so far. A single soil application of 300 ppm BABA modified the non-enzymatic antioxidant capacities and the leaf hydrogen peroxide levels in tobacco (Nicotiana tabacum L.) leaves in response to a 9-day treatment with 5.4 kJ m-2 d-1 biologically effective supplementary UV-B radiation in a model experiment that was performed in a growth chamber. BABA decreased leaf hydrogen peroxide levels both as a single factor and in combination with UV-B, but neither BABA nor UV-B affected leaf photochemistry significantly. The total antioxidant capacities were increased by either BABA or UV-B, and this response was additive in BABA pre-treated leaves. These results together with the observed changes in hydroxyl radical neutralising ability and non-enzymatic hydrogen peroxide antioxidant capacities show that BABA pre-treatment (i) has a long-term effect on leaf antioxidants even in the absence of other factors and (ii) modifies acclimative readjustment of prooxidant-antioxidant balance in response to UV-B. BABA-inducible antioxidants do not include phenolic compounds as a UV-B-induced increase in the adaxial leaf flavonoid index and total leaf extract UV absorption were unaffected by BABA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8pp00437dDOI Listing

Publication Analysis

Top Keywords

antioxidant capacities
12
hydrogen peroxide
12
β-aminobutyric acid
8
tobacco nicotiana
8
nicotiana tabacum
8
baba
8
baba pre-treatment
8
leaf hydrogen
8
peroxide levels
8
baba uv-b
8

Similar Publications

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

This study evaluated the antioxidant and antiproliferative effects of aqueous, ethanolic and methanolic extracts of Sedum nicaeense flowers and leaves. The MTT assay assessed cytotoxicity against colorectal cancer cells (Caco-2, HCT-116), breast cancer cells (T47D, MCF-7) and normal fibroblasts (MRC-5), while the ferric-reducing antioxidant power (FRAP) assay measured antioxidant capacity. Essential oils from flowers and leaves were analyzed using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Sake brewed using the kimoto-style exhibits high antioxidant capacity and is expected to inhibit the deterioration of sake quality due to oxidation. However, the antioxidant capacity of the added lactic acid bacteria has not been explored. We aimed to screen the lactic acid bacterium, Leuconostoc mesenteroides, with excellent brewing and antioxidant capacity, to develop sake with high antioxidant capacity.

View Article and Find Full Text PDF

Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. Extraction at 540 W for 2 min with a 1:20 (g/mL) was determined as the optimal parameter, resulting in a maximum yield of 5.90 % (w/w) with 63 % carbohydrate content consisting of glucose, galactose, maltose, mannose, and galacturonic acid, with structural linkages of β (1 → 4) and β (1 → 6) glycosidic bonds.

View Article and Find Full Text PDF

Thirty male Hu lambs (38.95 ± 3.87 kg; 6 months old) were randomly assigned to two groups: (1) SBM (a basal diet with soybean meal) and (2) FSM (a diet replacing 10 % soybean meal with 10 % flax seed meal) to evaluate their effects on Hu lamb production and slaughter performance, meat quality, muscle fatty acid composition, and antioxidant capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!