The oxidation of a prototypical phosphinidene oxide FP[double bond, length as m-dash]O has been studied in O2-doped Ar and N2 matrices at 10 K. Upon 266 nm laser irradiation, FP[double bond, length as m-dash]O combines with O2 and yields the cyclic peroxide, dioxaphosphirane oxide FP([double bond, length as m-dash]O)(O2). Unexpected oxygen scrambling occurs during the oxygenation as evidenced by the observation of a 1 : 2 mixture of FP([double bond, length as m-dash]16O)(18O18O) and FP([double bond, length as m-dash]18O)(16O18O) when 18O2 was used. Quantum chemical calculations suggest that the scrambling happens via the intermediacy of the low-lying triplet FPO3 by passing minimum energy crossing points (MECPs). In addition, inorganic dioxophosphorane FP([double bond, length as m-dash]O)2 has been also identified among the oxidation products of FP[double bond, length as m-dash]O.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc08945k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!