Adeno-associated virus (AAV) vectors have become one of the most widely used gene transfer tools in human gene therapy. Considerable effort is currently being focused on AAV capsid engineering strategies with the aim of developing novel variants with enhanced tropism for specific human cell types, decreased human seroreactivity, and increased manufacturability. Selection strategies based on directed evolution rely on the generation of highly variable AAV capsid libraries using methods such as DNA-family shuffling, a technique reliant on stretches of high DNA sequence identity between input parental capsid sequences. This identity dependence for reassembly of shuffled capsids is inherently limiting and results in decreased shuffling efficiency as the phylogenetic distance between parental AAV capsids increases. To overcome this limitation, we have developed a novel codon-optimization algorithm that exploits evolutionarily defined codon usage at each amino acid residue in the parental sequences. This method increases average sequence identity between capsids, while enhancing the probability of retaining capsid functionality, and facilitates incorporation of phylogenetically distant serotypes into the DNA-shuffled libraries. This technology will help accelerate the discovery of an increasingly powerful repertoire of AAV capsid variants for cell-type and disease-specific applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6279885PMC
http://dx.doi.org/10.1016/j.omtm.2018.10.016DOI Listing

Publication Analysis

Top Keywords

aav capsid
12
adeno-associated virus
8
capsid sequences
8
sequence identity
8
capsid
6
aav
5
codon-optimization wild-type
4
wild-type adeno-associated
4
virus capsid
4
sequences enhances
4

Similar Publications

Adeno-associated virus (AAV) inverted terminal repeats (ITRs) induce p53-dependent apoptosis in human embryonic stem cells (hESCs). To interrogate this phenomenon, a synthetic ITR (SynITR), harboring substitutions in putative p53 binding sites was generated and evaluated for vector production and gene delivery. Replication of SynITR flanked transgenic genome was similar compared to wild type (wt) ITR, with a modest increase in vector titers.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) have emerged as the foremost gene therapy delivery vehicles due to their versatility, durability, and safety profile. Here we demonstrate extensive chimerism, manifesting as pervasive barcode swapping, among complex AAV libraries that are packaged as a pool. The observed chimerism is length- and homology-dependent but capsid-independent, in some cases affecting the majority of packaged AAV genomes.

View Article and Find Full Text PDF

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

The Structural, Biophysical, and Antigenic Characterization of the Goose Parvovirus Capsid.

Microorganisms

January 2025

Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.

Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are increasingly used for preclinical and clinical cardiac gene therapy approaches. However, gene transfer to cardiomyocytes poses a challenge due to differences between AAV serotypes in terms of expression efficiency and . For example, AAV9 vectors work well in rodent heart muscle cells but not in cultivated neonatal rat ventricular cardiomyocytes (NRVCMs), necessitating the use of AAV6 vectors for studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!