The structural variation of symbiotic signals released by rhizobia determines the specificity of their interaction with legume plants. Previous studies showed that strains from different phylogenetic lineages had different symbiotic performance on certain cultivated soybeans. Whether they released similar or different symbiotic signals remained unclear. In this study, we compared their and gene clusters and made a detailed structural analysis of Nod factors and EPS by ESI-MS/MS and two dimensions NMR. Even if there are some differences among or gene clusters; they produced much conserved Nod factor and EPS compositions. The Nod factors consist of a cocktail of β-(1, 4)-linked tri-, tetra-, and pentamers of N-acetyl-D-glucosamine (GlcNAc). The C2 position on the non-reducing terminal end is modified by a lipid chain that contains 16 or 18 atoms of carbon-with or without unsaturations-, and the C6 position on the reducing residue is decorated by a fucose or a 2-O-methylfucose. Their EPS are composed of glucose, galactose, glucuronic acid, pyruvic acid in the ratios 5:1:2:1 or 6:1:2:1. These findings indicate that soybean cultivar compatibility of strains does not result from Nod factor or EPS structure variations. The structure comparison of the soybean microbionts with other strains showed that Nod factor structures of soybean microbionts are much conserved, although there are no specific genes shared by the soybean microsymbionts. EPS produced by strains are different from those of . All above is consistent with the previous deduction that Nod factor structures are related to host range, while those of EPS are connected with phylogeny.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275314PMC
http://dx.doi.org/10.3389/fmicb.2018.02852DOI Listing

Publication Analysis

Top Keywords

nod factor
16
nod factors
12
symbiotic signals
8
gene clusters
8
factor eps
8
soybean microbionts
8
factor structures
8
nod
7
eps
6
strains
5

Similar Publications

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Following traumatic brain injury (TBI), inhibition of the Na-K-Cl cotransporter1 (NKCC1) has been observed to alleviate damage to the blood-brain barrier (BBB). However, the underlying mechanism for this effect remains unclear. This study aimed to investigate the mechanisms by which inhibiting the NKCC1 attenuates disruption of BBB integrity in TBI.

View Article and Find Full Text PDF

Regulation of pattern recognition receptor signaling by palmitoylation.

iScience

February 2025

Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.

View Article and Find Full Text PDF

Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!