Challenges and Opportunities of Nanotechnology as Delivery Platform for Tocotrienols in Cancer Therapy.

Front Pharmacol

Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia.

Published: November 2018

Plant-derived phytonutrients have emerged as health enhancers. Tocotrienols from the vitamin E family gained high attention in recent years due to their multi-targeted biological properties, including lipid-lowering, neuroprotection, anti-inflammatory, antioxidant, and anticancer effects. Despite well-defined mechanism of action as an anti-cancer agent, their clinical use is hampered by poor pharmacokinetic profile and low oral bioavailability. Delivery systems based on nanotechnology were proven to be advantageous in elevating the delivery of tocotrienols to tumor sites for enhanced efficacy. To date, preclinical development of nanocarriers for tocotrienols include niosomes, lipid nanoemulsions, nanostructured lipid carriers (NLCs) and polymeric nanoparticles. Active targeting was explored via the use of transferrin as targeting ligand in niosomes. , nanocarriers were shown to enhance the anti-proliferative efficacy and cellular uptake of tocotrienols in cancer cells. , improved bioavailability of tocotrienols were reported with NLCs while marked tumor regression was observed with transferrin-targeted niosomes. In this review, the advantages and limitations of each nanocarriers were critically analyzed. Furthermore, a number of key challenges were identified including scale-up production, biological barriers, and toxicity profiles. To overcome these challenges, three research opportunities were highlighted based on rapid advancements in the field of nanomedicine. This review aims to provide a wholesome perspective for tocotrienol nanoformulations in cancer therapy directed toward effective clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276840PMC
http://dx.doi.org/10.3389/fphar.2018.01358DOI Listing

Publication Analysis

Top Keywords

tocotrienols cancer
8
cancer therapy
8
tocotrienols
6
challenges opportunities
4
opportunities nanotechnology
4
nanotechnology delivery
4
delivery platform
4
platform tocotrienols
4
therapy plant-derived
4
plant-derived phytonutrients
4

Similar Publications

The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS.

View Article and Find Full Text PDF

Anticancer Activity of Plant Tocotrienols, Fucoxanthin, Fucoidan, and Polyphenols in Dietary Supplements.

Nutrients

December 2024

Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, Campus Ciudad Universitaria, Av. Universidad S/N, San Nicolás de los Garza 66455, Mexico.

Plants and algae harbor diverse molecules with antioxidant activity and have been demonstrated to directly inhibit cancer cell growth and mitigate the oxidative damage associated with certain antitumor therapies. While antioxidant supplementation, either alone or in combination with chemotherapy, has shown promise in improving quality of life, further research is needed to explore the effects of antioxidant combinations on specific cancer cell lines. In this study, the in vitro cytotoxic and apoptotic properties of natural compounds derived from plants and algae, as well as certain dietary supplements, were investigated against various human cancer cell lines, including bone, leukemia, colorectal, breast, and prostate cancers.

View Article and Find Full Text PDF

Natural forms of vitamin E include four tocopherols and four tocotrienols (α, β, γ, and δ), which are essential as lipophilic antioxidants. Among these eight isoforms, α-tocopherol (αT), the predominant form of vitamin E found in tissues, has traditionally received the most attention in disease prevention research due to its robust antioxidant activity. However, recent studies suggest that other forms of vitamin E exhibit distinct and potentially more potent beneficial activities in disease prevention and treatment.

View Article and Find Full Text PDF

Cancer is a disease resulting from uncontrolled cell division, which significantly contributes to human mortality rates. An alternative approach to cancer treatment, such as cancer immunotherapy, is needed as the existing chemotherapy and radiotherapy approaches target the cancer cells and healthy dividing cells. Vitamin E is a plant-derived lipid-soluble antioxidant with numerous health-promoting benefits, including anticancer and immunomodulatory properties.

View Article and Find Full Text PDF

This study aimed to evaluate the preventive efficacy of tocotrienol in inhibiting the nuclear factor-kappa B (NF-κB) mediated inflammation pathways in colorectal cancer. We utilized the azoxymethane (AOM) and dextran sulfate sodium salt (DSS) to induce colitis-associated colorectal cancer (CAC) mice model. In generating a CAC model, mice were intraperitoneally injected with AOM at a concentration of 10 mg/kg body weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!