Dementia is a complex clinical syndrome characterised by progressive decline in cognitive function. It usually presents itself as impairment in memory, loss of judgement, abstract thinking and other disturbances that are severe enough to interfere with activities of daily living. It has long been considered as one of the major challenges at present posing an ever-increasing demand on global health and social care systems. Of all the different forms of dementia, Alzheimer's disease (AD) is the most common. The term non-coding RNA (ncRNA) refers to RNA sequences which do not have the ability to be translated into proteins and therefore mainly fall within the realm of the recently acknowledged 'dark matter' of the genome. This genomic dark matter encompasses a whole spectrum of differing ncRNA families such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), PIWI-interacting RNAs (piRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snoRNAs) and circular RNAs (circRNAs), to name but a few. Consequently, due to the widespread influences of miRNAs and lncRNAs across all disease pathways, it is of critical importance for researchers in the field of dementia to focus their attention on possible ncRNA-induced pathogeneses, with the ultimate goal of identifying novel diagnostic procedures and drug targets, together with the development of novel therapies to control such a devastating mental condition in the patient population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260472 | PMC |
http://dx.doi.org/10.1016/j.ncrna.2018.09.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!