Research on generative models plays a central role in the emerging field of network science, studying how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks including verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6225971 | PMC |
http://dx.doi.org/10.1007/s41109-017-0054-z | DOI Listing |
J Pediatr Psychol
January 2025
Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, United States.
Objective: This ancillary study's purpose is to describe the relationship between dose of treatment and body mass index (BMI) outcomes in a tele-behavioral health program delivered in the IDeA States Pediatric Clinical Trials Network to children and their families living in rural communities.
Methods: Participants randomized to the intervention were able to receive 26 contact hours (15 hr of group sessions and 11 hr of individual sessions) of material focused on nutrition, physical activity, and behavioral caregiver training delivered via interactive televideo. Dose of the intervention received by child/caregiver dyads (n = 52) from rural areas was measured as contact hours.
Background: The purpose of this study was to evaluate the performance and evolution of Chat Generative Pre-Trained Transformer (ChatGPT; OpenAI) as a resource for shoulder and elbow surgery information by assessing its accuracy on the American Academy of Orthopaedic Surgeons shoulder-elbow self-assessment questions. We hypothesized that both ChatGPT models would demonstrate proficiency and that there would be significant improvement with progressive iterations.
Materials And Methods: A total of 200 questions were selected from the 2019 and 2021 American Academy of Orthopaedic Surgeons shoulder-elbow self-assessment questions.
J Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFEnviron Technol
January 2025
Centre for Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India.
Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
Data and Web Science Group, School of Business Informatics and Mathematics, University of Manneim, Mannheim, Germany.
Background: The rapid evolution of large language models (LLMs), such as Bidirectional Encoder Representations from Transformers (BERT; Google) and GPT (OpenAI), has introduced significant advancements in natural language processing. These models are increasingly integrated into various applications, including mental health support. However, the credibility of LLMs in providing reliable and explainable mental health information and support remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!