There is evidence that 15-30% of the general population cannot effectively operate brain-computer interfaces (BCIs). Thus the BCI performance predictors are critically required to pre-screen participants. Current neurophysiological and psychological tests either require complicated equipment or suffer from subjectivity. Thus, a simple and objective BCI performance predictor is desirable. Neurofeedback (NFB) training involves performing a cognitive task (motor imagery) instructed via sensory stimuli and re-adjusted through ongoing real-time feedback. A simple reaction time (SRT) test reflects the time required for a subject to respond to a defined stimulus. Thus, we postulated that individuals with shorter reaction times operate a BCI with rapidly updated feedback better than individuals with longer reaction times. Furthermore, we investigated how changing the feedback update interval (FUI), i.e., modification of the feedback provision frequency, affects the correlation between the SRT and BCI performance. Ten participants attended four NFB sessions with FUIs of 16, 24, 48, and 96 ms in a randomized order. We found that: 1) SRT is correlated with the BCI performance with FUIs of 16 and 96 ms; 2) good and poor performers elicit stronger ERDs and control BCIs more effectively (i.e., produced larger information transfer rates) with 16 and 96 ms FUIs, respectively. Our findings suggest that SRT may be used as a simple and objective surrogate for BCI aptitude with FUIs of 16 and 96 ms. It also implies that the FUI customization according to participants SRT measure may enhance the BCI performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6280922PMC
http://dx.doi.org/10.1109/JTEHM.2018.2875985DOI Listing

Publication Analysis

Top Keywords

bci performance
20
reaction time
8
simple objective
8
reaction times
8
bci
7
performance
5
srt
5
reaction
4
time predicts
4
predicts brain-computer
4

Similar Publications

Objective: Creating an intracortical brain-computer interface (iBCI) capable of seamless transitions between tasks and contexts would greatly enhance user experience. However, the nonlinearity in neural activity presents challenges to computing a global iBCI decoder. We aimed to develop a method that differs from a globally optimized decoder to address this issue.

View Article and Find Full Text PDF

The dry bulk shipping market plays a crucial role in global trade. To examine the volatility, correlation, and risk spillover between freight rates in the BCI and BPI markets, this paper employs the GARCH-Copula-CoVaR model. We analyze the dynamic behavior of the secondary market freight index for dry bulk cargo, highlighting its performance in a complex financial environment and offering empirical support for the shipping industry and financial markets.

View Article and Find Full Text PDF

In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, decoding EEG signals poses significant challenges due to their complexity, dynamic nature, and low signal-to-noise ratio (SNR). Traditional EEG pattern recognition algorithms typically involve two key steps: feature extraction and feature classification, both crucial for accurate operation.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Background: Brain-computer interface (BCI) offers promising solutions to cognitive enhancement in older people. Despite the clear progress received, there is limited evidence of BCI implementation for rehabilitation. This systematic review addresses BCI applications and challenges in the standard practice of EEG-based neurofeedback (NF) training in healthy older people or older people with mild cognitive impairment (MCI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!