Mycoplasma hyopneumoniae infections are responsible for significant economic losses in the swine industry. Commercially available vaccines are not able to inhibit the colonisation of the respiratory tract by M. hyopneumoniae absolutely, therefore vaccination can be completed with antibiotic treatment to moderate clinical signs and improve performances of the animals. Antibiotic susceptibility testing of M. hyopneumoniae is time-consuming and complicated; therefore, it is not accomplished routinely. The aim of this study was to determine the in vitro susceptibility to 15 different antibiotics of M. hyopneumoniae isolates originating from Hungarian slaughterhouses and to examine single-nucleotide polymorphisms (SNPs) in genes affecting susceptibility to antimicrobials. Minimum inhibitory concentration (MIC) values of the examined antibiotics against 44 M. hyopneumoniae strains were determined by microbroth dilution method. While all of the tested antibiotics were effective against the majority of the studied strains, high MIC values of fluoroquinolones (enrofloxacin 2.5 μg/ml; marbofloxacin 5 μg/ml) were observed against one strain (MycSu17) and extremely high MIC values of macrolides and lincomycin (tilmicosin, tulathromycin and lincomycin >64 μg/ml; gamithromycin 64 μg/ml; tylosin 32 μg/ml and tylvalosin 2 μg/ml) were determined against another, outlier strain (MycSu18). Amino acid changes in the genes gyrA (Gly81Ala; Ala83Val; Glu87Gly, according to Escherichia coli numbering) and parC (Ser80Phe/Tyr; Asp84Asn) correlated with decreased antibiotic susceptibility to fluoroquinolones and a SNP in the nucleotide sequence of the 23S rRNA (A2059G) was found to be associated with increased MIC values of macrolides. The correlation was more remarkable when final MIC values were evaluated. This study presented the antibiotic susceptibility profiles of M. hyopneumoniae strains circulating in the Central European region, demonstrating the high in vitro efficacy of the tested agents. The observed high MIC values correlated with the SNPs in the examined regions and support the relevance of susceptibility testing and directed antibiotic therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289410PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209030PLOS

Publication Analysis

Top Keywords

mic values
24
antibiotic susceptibility
16
susceptibility testing
12
high mic
12
mycoplasma hyopneumoniae
8
microbroth dilution
8
dilution method
8
antibiotics hyopneumoniae
8
hyopneumoniae strains
8
values macrolides
8

Similar Publications

Polyphenolic contents, antioxidant, and antimicrobial activities of Saccocalyx satureioides Coss. & Dur. essential oil and methanol extracts.

An Acad Bras Cienc

January 2025

University of M'sila, Department of Microbiology and Biochemistry, University Pole, Road Bordj Bou Arreridj, M'sila 28000, Algeria.

The whole plant Saccocalyx satureioides, an endemic medicinal plant in Algeria, was evaluated for its polyphenolic contents, antioxidant and antimicrobial activities. The polyphenolic contents of the plant methanolic extracts ranged from 170.47 to 285.

View Article and Find Full Text PDF

The objective of this study was to analyze the antimicrobial and anti-stick capacity of essential oil extracted from oregano (Origanum vulgare) in relation to various strains of Escherichia coli (Ec 41, Ec 42, Ec 44, Ec 45) isolated from meat products. Techniques such as Determination of Minimum Inhibitory Concentration were used (MIC) and Minimum Bactericidal Concentration (CBM). Furthermore, the method was used disk diffusion method to examine the interaction between O.

View Article and Find Full Text PDF

Screening, Discovery, and Optimization of the Natural Antitubercular Chlorflavonin from a Marine-Derived Fungal Library.

J Nat Prod

January 2025

Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.

Tuberculosis (TB), caused by the bacterium (), is still a leading cause of mortality worldwide. Fifty-fungi from a marine-derived fungal library were screened for anti- activity, and an strain with strong anti- activity was found. Three known flavones, chlorflavonin (), dechlorflavonin (), and bromoflavone (), were isolated from this fungus.

View Article and Find Full Text PDF

Antimicrobial and Cytotoxic Potential of Endophytic Aspergillus versicolor Isolate from the Medicinal Plant Plectranthus amboinicus.

Curr Microbiol

January 2025

Department of Microbiology and Botany, School of Sciences, J. C. Road, JAIN (Deemed-to-be University), Bangalore, Karnataka, 560027, India.

Endophytic fungi are non-pathogenic organisms that colonise healthy plant tissues asymptomatically. Endophytes derived from medicinal plants are sources for identifying natural products and bioactive compounds with potential uses for industry, medicine, agriculture, and related sectors. In the present study, ethyl acetate crude extracts of four endophytic fungal isolates (CALF1, CALF4, and CASF1) from the medicinal plant Plectranthus amboinicus showed potent antimicrobial activity against the test pathogenic bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis using disc diffusion assays.

View Article and Find Full Text PDF

Positive end-expiratory pressure (PEEP) improves respiratory conditions. However, the complex interaction between PEEP and hemodynamics in heart failure patients makes it challenging to determine appropriate PEEP settings. In this study, we developed a framework for the impact of PEEP on hemodynamics considering cardiac function, by integrating the impact of PEEP in the generalized circulatory equilibrium framework, and validated the framework by assessing its ability to accurately predict PEEP-induced hemodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!