The last two decades have seen tremendous progress in quantitative understanding of several major phonon scattering mechanisms (phonon-phonon, phonon-boundary, phonon-defects), as they are the determinant factors in lattice thermal transport, which is critical for the proper functioning of various electronic and energy conversion devices. However, the roles of another major scattering mechanism, electron-phonon (e-ph) interactions, remain elusive. This is largely due to the lack of solid experimental evidence for the effects of e-ph scattering in the lattice thermal conductivity for the material systems studied thus far. Here we show distinct signatures in the lattice thermal conductivity observed below the charge density wave transition temperatures in NbSe nanowires, which cannot be recaptured without considering e-ph scattering. Our findings can serve as the cornerstone for quantitative understanding of the e-ph scattering effects on lattice thermal transport in many technologically important materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b04206DOI Listing

Publication Analysis

Top Keywords

lattice thermal
20
thermal conductivity
12
e-ph scattering
12
distinct signatures
8
nbse nanowires
8
quantitative understanding
8
thermal transport
8
lattice
5
thermal
5
scattering
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!