Quantitative X-ray computed tomography (XCT) diagnostics for reacting flows are developed and demonstrated in application to premixed flames in open and optically inaccessible geometries. A laboratory X-ray scanner is employed to investigate methane/air flames that were diluted with krypton as an inert radiodense tracer gas. Effects of acquisition rate and tracer gas concentration on the signal-to-noise ratio are examined. It is shown that statistically converged three-dimensional attenuation measurements can be obtained with limited impact from the tracer gas and within an acceptable acquisition time. Specific aspects of the tomographic reconstruction and the experimental procedure are examined, with particular emphasis on the quantification of experimental uncertainties. A method is developed to determine density and temperature from the X-ray attenuation measurements. These experiments are complemented by one- and multi-dimensional calculations to quantify the influence of krypton on the flame behavior. To demonstrate the merit of XCT for optically inaccessible flames, measurements of a complex flame geometry in a tubular confinement are performed. The use of a coflow to provide a uniform tracer-gas concentration is shown to improve the quantitative temperature evaluation. These measurements demonstrate the viability of XCT for flame-structure analysis and multi-dimensional temperature measurements using laboratory X-ray systems. Further opportunities for improving this diagnostic are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6278941PMC
http://dx.doi.org/10.1016/j.combustflame.2018.11.015DOI Listing

Publication Analysis

Top Keywords

tracer gas
12
x-ray computed
8
computed tomography
8
flame-structure analysis
8
premixed flames
8
optically inaccessible
8
laboratory x-ray
8
attenuation measurements
8
x-ray
5
measurements
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!