Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The modeling of large-scale communicable epidemics has greatly benefited in the last years from the increasing availability of highly detailed data. Particullarly, in order to achieve quantitative descriptions of the evolution of epidemics, contact networks and mixing patterns are key. These heterogeneous patterns depend on several factors such as location, socioeconomic conditions, time, and age. This last factor has been shown to encapsulate a large fraction of the observed inter-individual variation in contact patterns, an observation validated by different measurements of age-dependent contact matrices. Recently, several works have studied how to project those matrices to areas where empirical data are not available. However, the dependence of contact matrices on demographic structures and their time evolution has been largely neglected. In this work, we tackle the problem of how to transform an empirical contact matrix that has been obtained for a given demographic structure into a different contact matrix that is compatible with a different demography. The methodology discussed here allows to extrapolate a contact structure measured in a particular area to any other whose demographic structure is known, as well as to obtain the time evolution of contact matrices as a function of the demographic dynamics of the populations they refer to. To quantify the effect of considering time-dynamics of contact patterns on disease modeling, we implemented a Susceptible-Exposed-Infected-Recovered (SEIR) model on 16 different countries and regions and evaluated the impact of neglecting the temporal evolution of mixing patterns. Our results show that simulated disease incidence rates, both at the aggregated and age-specific levels, are significantly dependent on contact structures variation driven by demographic evolution. The present work opens the path to eliminate technical biases from model-based impact evaluations of future epidemic threats and warns against the use of contact matrices to model diseases without correcting for demographic evolution or geographic variations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6300299 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1006638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!