Bacterial infections and antibiotic resistance, particularly by Gram-negative pathogens, have become a global healthcare crisis. We report the design of a class of cationic antimicrobial polymers that cluster local facial amphiphilicity from repeating units to enhance interactions with bacterial membranes without requiring a globally conformational arrangement associated with highly unfavorable entropic loss. This concept of macromolecular architectures is demonstrated with a series of multicyclic natural product-based cationic polymers. We have shown that cholic acid derivatives with three charged head groups are more potent and selective than lithocholic and deoxycholic counterparts, particularly against Gram-negative bacteria. This is ascribed to the formation of true facial amphiphilicity with hydrophilic ion groups oriented on one face and hydrophobic multicyclic hydrocarbon structures on the opposite face. Such local facial amphiphilicity is clustered via a flexible macromolecular backbone in a concerted way when in contact with bacterial membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286373 | PMC |
http://dx.doi.org/10.1038/s41467-018-07651-7 | DOI Listing |
Curr Pharm Biotechnol
January 2025
Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science & Technology, CHARUSAT At- Changa, Dist- Anand, Ta- Petlad, Pin-388421.
Cancer treatment has evolved significantly over the years, incorporating a range of modalities including surgery, radiation, chemotherapy, and immunotherapy. However, challenges such as drug resistance, systemic toxicity, and poor targeting necessitate innovative approaches. Peptides have gained attention in cancer therapy due to their specificity, potency, and ability to modulate various biological pathways.
View Article and Find Full Text PDFInt J Pharm
December 2024
Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland. Electronic address:
Small
December 2024
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
Cellular senescence has recently been recognized as one of the hallmarks of cancer, aging, as well as many age-related disorders, sparking significant interest in the development of senolytics, compounds that can remove senescent cells. However, most current pharmacological strategies face challenges related to non-specific delivery, leading to significant side effects that hinder safe and effective treatments. To address these issues, galactose-functionalized amphiphiles are synthesized that can self-assemble into micelles and be loaded with a senolytic cargo.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
This study explores the liquid crystalline properties of novel amphiphilic β-cyclodextrin derivatives functionalized with seven oligoethylene glycol chains at the primary face, terminated with either an O-methyl or an O-cyanoethyl group, and fourteen hydrophobic aliphatic chains (elaidic or oleic acids) at the secondary face. These derivatives were designed to study the impact of chain conformation and terminal group polarity on their mesomorphic behavior. Thermal, microscopic, and X-ray diffraction studies revealed that the elaidic derivatives form columnar hexagonal mesophases, with the O-cyanoethyl derivative undergoing a slow, temperature-dependent transition to a bicontinuous cubic phase.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
Control over the orientation of polycyclic aromatic dyes in thin films is paramount to tailoring their optical, electronic, and mechanical properties. Their supramolecular assembly in films is tuned here by converting the macrocyclic dyes to large amphiphiles. Two octaalkythio-substituted tetraazaporphyrins (TAPs) with one 5-carboxypentyl and one pentyl or dodecyl chain per pyrrole ring were synthesized as statistical mixtures of four regioisomers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!