AI Article Synopsis

  • * The researchers introduce a hybrid approach that combines computational modeling with experimental testing to optimize peptides through iterative machine learning.
  • * They successfully applied this method to find unique peptide substrates for a specific enzyme, showing that machine learning can improve peptide selection beyond traditional biological screening methods.

Article Abstract

The discovery of peptide substrates for enzymes with exclusive, selective activities is a central goal in chemical biology. In this paper, we develop a hybrid computational and biochemical method to rapidly optimize peptides for specific, orthogonal biochemical functions. The method is an iterative machine learning process by which experimental data is deposited into a mathematical algorithm that selects potential peptide substrates to be tested experimentally. Once tested, the algorithm uses the experimental data to refine future selections. This process is repeated until a suitable set of de novo peptide substrates are discovered. We employed this technology to discover orthogonal peptide substrates for 4'-phosphopantetheinyl transferase, an enzyme class that covalently modifies proteins. In this manner, we have demonstrated that machine learning can be leveraged to guide peptide optimization for specific biochemical functions not immediately accessible by biological screening techniques, such as phage display and random mutagenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286390PMC
http://dx.doi.org/10.1038/s41467-018-07717-6DOI Listing

Publication Analysis

Top Keywords

peptide substrates
20
machine learning
12
novo peptide
8
substrates enzymes
8
biochemical functions
8
experimental data
8
peptide
6
substrates
5
discovering novo
4
enzymes machine
4

Similar Publications

Background: Signal Peptide Peptidase-Like 2b (SPPL2b) is relevant for AD, being a brain-specific intramembrane protein involved in the cleavage of Alzheimer's disease (AD)-related proteins, such as BRI2, inflammatory-related proteins like CD74, TNFalpha, and Clec7a, and synaptic proteins Neuregulin-1 and VAMP 1-4. SPPL2b is specifically expressed in the hippocampus and cortex. The cleavage of TNFalpha by SPPL2b promotes the inflammatory pathway.

View Article and Find Full Text PDF

Background: Presenilin1 (PS1)/γ-secretase cleaves within the transmembrane domain of numerous receptor substrates. Mutations in PS1 have implications on the catalytic subunit of γ-secretase decreasing its activity and becoming a potential causative factor for Familial Alzheimer's Disease (FAD). This work studies the role of PS1/γ-secretase on the processing, angiogenic signaling, and functions of VEGFR2 and the effects of PS1 FAD mutants on the γ-secretase-mediated epsilon cleavage of VEGFR2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Tsinghua university, Beijing, Beijing, China.

Background: Successive cleavages of amyloid precursor protein C-terminal 99 residues (APP-C99) by human γ-secretase result in amyloid-β peptides (Aβs) of varying lengths, the main constituents of amyloid plaques in Alzheimer's disease patients. Most cleavages have a step size of three residues, as exemplified by sequential generation of Aβ49, Aβ46, Aβ43, and Aβ40.

Method: To elucidate the mechanism of substrate cleavage, we determined atomic structures of human γ-secretase bound individually to APP-C99, Aβ49, Aβ46, and Aβ43.

View Article and Find Full Text PDF

SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.

View Article and Find Full Text PDF

Background: Fundamental questions remain about the key mechanisms that initiate Alzheimer's disease (AD) and the factors that promote its progression. Here we report the successful generation of the first genetically-engineered marmosets that carry knock-in (KI) point mutations in the presenilin-1 (PSEN1) gene that can be studied from birth throughout lifespan.

Method: CRISPR/Cas9 was used to generate marmosets with C410Y or A426P point mutations in PSEN1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!