The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo.

Biol Pharm Bull

Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University.

Published: February 2019

In eukaryotic genomes, the nucleosome is the structural and functional unit, and its position and dynamics are important for gene expression control and epigenetic regulation. Epigenetics is an important mechanism in development and homeostasis, and aberrant epigenetics is a common feature in cancer. Although understanding the mechanistic basis that determines nucleosome positioning in vivo is important for elucidating chromatin function and epigenetic regulation, a suitable experimental system to examine such mechanisms is still being developed. Herein, we examined nucleosome organization in yeast minichromosomes, using a parallel mapping method we previously developed that involve site-directed chemical cleavage and micrococcal nuclease digestion. This parallel mapping is capable of revealing the differences in the occupancy and the stability of individual nucleosomes in the minichromosome. Based on the previously characterized minichromosome, we engineered a set of new minichromosomes, aimed at strengthening the positioning of the nucleosomes. The site-directed chemical mapping method demonstrated that the nucleosome positioning in the newly designed yeast minichromosome system was significantly more stable. This system will be useful for elucidating the determinants of nucleosome organization, such as DNA sequences and/or nucleosome binding proteins, and for determining the relationships between nucleosome dynamics and epigenetic regulation, which are targets for therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b18-00732DOI Listing

Publication Analysis

Top Keywords

epigenetic regulation
12
yeast minichromosome
8
minichromosome system
8
nucleosome positioning
8
nucleosome organization
8
parallel mapping
8
mapping method
8
site-directed chemical
8
nucleosome
7
system
4

Similar Publications

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!