Olfactory ensheathing cells from the olfactory bulb and olfactory mucosa have been found to increase axonal sprouting and pathfinding and promote the recovery of vibrissae motor performance in facial nerve transection injured rats. However, it is not yet clear whether olfactory ensheathing cells promote the reparation of facial nerve defects in rats. In this study, a collagen sponge and silicone tube neural conduit was implanted into the 6-mm defect of the buccal branch of the facial nerve in adult rats. Olfactory ensheathing cells isolated from the olfactory bulb of newborn Sprague-Dawley rats were injected into the neural conduits connecting the ends of the broken nerves, the morphology and function of the regenerated nerves were compared between the rats implanted with olfactory ensheathing cells with the rats injected with saline. Facial paralysis was assessed. Nerve electrography was used to measure facial nerve-induced action potentials. Visual inspection, anatomical microscopy and hematoxylin-eosin staining were used to assess the histomorphology around the transplanted neural conduit and the morphology of the regenerated nerve. Using fluorogold retrograde tracing, toluidine blue staining and lead uranyl acetate staining, we also measured the number of neurons in the anterior exterior lateral facial nerve motor nucleus, the number of myelinated nerve fibers, and nerve fiber diameter and myelin sheath thickness, respectively. After surgery, olfactory ensheathing cells decreased facial paralysis and the latency of the facial nerve-induced action potentials. There were no differences in the general morphology of the regenerating nerves between the rats implanted with olfactory ensheathing cells and the rats injected with saline. Between-group results showed that olfactory ensheathing cell treatment increased the number of regenerated neurons, improved nerve fiber morphology, and increased the number of myelinated nerve fibers, nerve fiber diameter, and myelin sheath thickness. In conclusion, implantation of olfactory ensheathing cells can promote regeneration and functional recovery after facial nerve damage in rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263002 | PMC |
http://dx.doi.org/10.4103/1673-5374.243717 | DOI Listing |
Neural Regen Res
December 2024
Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
Bull Exp Biol Med
November 2024
V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
Neurosci Bull
November 2024
School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
Yes-associated protein (YAP), the key transcriptional co-factor and downstream effector of the Hippo pathway, has emerged as one of the primary regulators of neural as well as glial cells. It has been detected in various glial cell types, including Schwann cells and olfactory ensheathing cells in the peripheral nervous system, as well as radial glial cells, ependymal cells, Bergmann glia, retinal Müller cells, astrocytes, oligodendrocytes, and microglia in the central nervous system. With the development of neuroscience, understanding the functions of YAP in the physiological or pathological processes of glia is advancing.
View Article and Find Full Text PDFMolecules
October 2024
Institute of Biomolecular Chemistry, National Research Council, Via P. Gaifami 18, I-95126 Catania, Italy.
Neuroinflammation is a symptom of different neurodegenerative diseases, and growing interest is directed towards active drug development for the reduction of its negative effects. The anti-inflammatory activity of polyunsaturated fatty acids, eicosapentaenoic (EPA), docosahexaenoic (DHA), and their amide derivatives was largely investigated on some neural cells. Herein, we aimed to elucidate the protective role of both EPA and DHA and the corresponding -ethanolamides EPA-EA and DHA-EA on neonatal mouse Olfactory Ensheathing Cells (OECs) after exposition to lipopolysaccharide (LPS)-induced neuroinflammation.
View Article and Find Full Text PDFActa Biomater
December 2024
Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States. Electronic address:
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!