Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors.

Biosens Bioelectron

State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Published: February 2019

Antibiotic residue, as emerging pollution resulting from antibiotic abuse, poses a serious threat on ecosystem and human health. Conventional methods for antibiotic detection, e.g., liquid/gas chromatography, are based on complicated instruments and time-consuming; therefore, efforts have been made to realize in situ and real-time monitoring of antibiotics. Here, a miniaturized and integratable electronic antibiotic sensor based on field-effect transistor (FET) is reported. The reduced graphene oxide (rGO) nanosheet is used as the channel material and the aptamer RNA for tobramycin is modified onto rGO as the probe. A novel sensor design with 6-mercapto-1-hexanol (MCH)/1-pyrenebutanol (PBA) blocking layer (BL) for structure optimization is applied to enhance the sensor reliability and specificity. This rGO/aptamer/BL sensor shows an ultra-sensitivity to tobramycin with a lower detection limit of 0.3 nM and a quick response within 5 s, as well as a high specificity over other antibiotics such as kanamycin, streptomycin, ciprofloxacin, and tetracycline. The sensing mechanism based on the deformation of the charged aptamer probe is proposed via an in-depth analysis of the interactions between aptamer, tobramycin and rGO. In addition, sensing test performed under controlled microfluidic flow conditions demonstrates a great potential of the sensors in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.11.034DOI Listing

Publication Analysis

Top Keywords

ultratrace antibiotic
4
antibiotic sensing
4
sensing aptamer/graphene-based
4
aptamer/graphene-based field-effect
4
field-effect transistors
4
antibiotic
4
transistors antibiotic
4
antibiotic residue
4
residue emerging
4
emerging pollution
4

Similar Publications

MnO nanoparticles enhance the activity of the Zr-MOF matrix electrochemical sensor for efficiently identifying ultra-trace tetracycline residues in food.

Mikrochim Acta

December 2024

Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Shaanxi, 716000, China.

A novel nanobiosensor was constructed by in situ locating nanometer MnO particles with controllable size and morphology in a Zr-MOF substrate to serve as an electrochemical probe. The synergistic effect of the two components, Zr-MOFs with high specific surface area and compatibility as a carrier for MnO, resulted in improved electrochemical activity and excellent electrochemical identification performance for the MnO@Zr-MOF/GCE biosensor. Under optimized experimental conditions and using CV and DPV technology, the biosensor showed a wide linear detection range (2-200 μM), a low detection limit (2.

View Article and Find Full Text PDF

A new SERS quantitative analysis strategy for ultratrace chloramphenicol with FeO@MIP nanocatalytic probe.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, China. Electronic address:

Three functional magnetic nanocatalytic probe, which integrates recognition, catalytic amplification, and separation enrichment, is a new approach to construct a simple, fast, highly selective, and sensitive analytical method. In this article, a new magnetic nanosurface molecularly imprinted polymer nanoprobe (FeO@MIP) with trifunctionality was rapidly prepared using a microwave-assisted method with magnetic FeO nanoparticles as a substrate, chloramphenicol (CAP) as a template molecule, and methacrylic acid as a functional monomer. The characterized nanoprobe was found that could specifically recognize CAP, strongly catalyze the new indicator nanoreaction of fructose (DF)-HAuCl.

View Article and Find Full Text PDF

A new PdMOF-loaded molecularly imprinted polyaniline nanocatalytic probe for ultratrace oxytetracycline with SERS technique.

Food Chem

July 2024

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, China. Electronic address:

In this paper, a new Pd metal organic framework (PdMOF) surface molecularly imprinted polyaniline nanocatalytic probe (PdMOF@MIP) with dual functions of recognition and catalysis was synthesized. It is found that the PdMOF@MIP nanoprobe can not only identify OTC but also catalyze the new nanoreaction of NaHPO-HAuCl to generate gold nanoparticles (AuNPs), and the generated AuNPs could be traced by surface-enhanced Raman scattering (SERS). When OTC specifically binds to PdMOF@MIP to generate PdMOF@MIP-OTC conjugate, its catalytic effect is weakened and the analytical signal is reduced linaerly.

View Article and Find Full Text PDF

Supramolecular macrocycle-based covalent organic frameworks (COFs) are promising adsorbents for adsorption of hazards due to their host-guest recognition property. However, most supramolecular macrocycles are conformationally flexible, making them challenging to introduce into COFs. In this work, a calix[6]arene-based COF (CX6-BD COF) was fabricated with a unique flower-like morphology and high crystallinity.

View Article and Find Full Text PDF

Trace level detection and efficient removal of arsenite ions (As (III)) and ciprofloxacin (CPR) antibiotic was achieved using hemicellulose based ratiometric fluorescent aerogel. Hemicellulose derived from rice straw was oxidised to dialdehyde hemicellulose followed by crosslinking using chitosan via a Schiff base reaction (C = N) yielding a highly porous 3D fluorescent aerogel (CS@DAHCA). Various factors governing adsorption were analyzed by applying response surface methodology (RSM) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!