Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objectives: Meta-analyses sometimes summarize results in the presence of substantial unexplained between-study heterogeneity. As GRADE criteria highlight, unexplained heterogeneity reduces certainty in the evidence, resulting in limited confidence in average effect estimates. The aim of this paper is to provide a new clinically useful approach to estimating an intervention effect in light of unexplained heterogeneity.
Methods: We used a random-effects model to estimate the distribution of an intervention-effect across various groups of patients given data derived from meta-analysis. The model provides a distribution of the probabilities of various possible effects in a new group of patients. We examined how our method influenced the conclusions of two meta-analyses.
Results: In one example, our method illustrated that evidence from a meta-analysis did not support authors' highly publicized conclusion that hypericum is as effective as other antidepressants. In the second example, our method provided insight into a subgroup analysis of the effect of ribavirin in hepatitis C, demonstrating clear important benefit in one subgroup but not in others.
Conclusion: Analysing the distribution of an intervention-effect in random-effects models may enable clinicians to improve their understanding of the probability of particular-intervention effects in a new population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jclinepi.2018.11.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!