MAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposure.

Ecotoxicol Environ Saf

Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, PR China. Electronic address:

Published: April 2019

Acute and chronic exposure to particulate matter (PM) 2.5 is associated with adverse health effect upon the cardiovascular (CV) system. However, the molecular mechanism by which PM2.5 evokes CV injuries has not been fully clarified. In our recent report, we demonstrate that exposure to PM2.5 leads to elevation of circulating angiotensin II (ANGII) levels and local expressions of angiotensinogen (AGT, the precursor of ANGII), angiotensin-converting enzyme (ACE) and ANGII type 1 receptor (AT1R) in the vascular endothelial cells, which subsequently instigates the oxidative stress and proinflammatory response in the vascular endothelium. In the present study, we disclosed that PM2.5 exposure induced the activation of the transcriptional factor AP-1 and its components, c-Jun and ATF2, in the human vascular endothelial cells. Although the DNA-binding sites for AP-1 were identified within the promoter regions of AGT, ACE and AT1R genes, RT-PCR and immunoblot assays indicated that AP-1 transactivation was only involved in AT1R upregulation, but did not affect the induction of AGT and ACE expression under the same conditions. Furthermore, ERKs and p38K functioned as the upstream protein kinases involving in AP-1 transactivation and AT1R upregulation under PM2.5 stimulation. In addition, the oxidative stress and proinflammatory responses in the PM2.5-treated vascular endothelial cells were significantly reduced when MAPKs and AP-1 activation were inhibited. Therefore, we conclude that PM2.5 exposure induces MAPK/AP-1 cascade activation, which contributes to AT1R upregulation and vascular endothelial dysfunction. Identifying novel therapeutic targets to alleviate AP-1 transactivation and restore AT1R expression may be helpful for the management of PM2.5-induced CV burden.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.11.124DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
20
at1r upregulation
16
endothelial cells
16
pm25 exposure
12
ap-1 transactivation
12
upregulation vascular
8
oxidative stress
8
stress proinflammatory
8
agt ace
8
at1r
7

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Effectiveness and cytokine profile of combined anti-vascular endothelial growth factor and corticosteroid therapy for chronic retinal vein occlusion.

Graefes Arch Clin Exp Ophthalmol

January 2025

Department of Ophthalmology and Micro-Technology, Yokohama City University, 4-57 Urafunecho, Minami-ku, Yokohama, 232-0024, Kanagawa, Japan.

Purpose: To investigate whether sub-Tenon injection of triamcinolone acetonide (STTA) combined with anti-vascular endothelial growth factor (VEGF) prolongs the recurrence intervals of macular edema (ME) for chronic retinal vein occlusion (RVO) and to investigate the differences in intraocular inflammatory cytokines between good responders (GRs) and non-responders (NRs).

Methods: This retrospective, observational study involved 42 eyes of 42 patients with ME due to chronic RVO who had received only anti-VEGF for ≥ 1 year and were transitioned to combination therapy. GRs were defined as patients whose recurrence intervals were prolonged by ≥ 2 weeks compared with patients receiving anti-VEGF alone.

View Article and Find Full Text PDF

Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.

Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!