In this study therapeutic potential of fucoidan fraction-2 (Fu-F2) isolated from Sargassum polycystum was evaluated for the development of antibacterial agent against the human and animal pathogenic bacteria by in vitro and in vivo analysis. The Fu-F2 contained 51.12 ± 0.86% of total sugar and 20.41 ± 0.91% of sulfate. The structural characterization of Fu-F2 was performed by HPLC, FTIR and NMR analysis and reported in our earlier study. The in vitro antibacterial assays such as MIC, MBC, killing kinetics, disk diffusion, protein leakage, ROS and confocal laser scanning microscopy demonstrate that Fu-F2 possesses the highest antibacterial activity against the tested pathogens. Among the tested pathogens, the highest antibacterial activity (21 ± 1.0 mm) was recorded at the concentration of 50 μg/ml against Pseudomonas aeruginosa and the lowest activity (16 ± 0.53 mm) was registered against Staphylococcus aureus. In the in vivo analysis, the pre-treatment group with Fu-F2 at the concentration of 15 mg/0.1 kg through feed exhibited the highest survival (83.4%) and antioxidant activities (p < 0.05) than the fish infected with pathogen. Thus, the present findings suggest that the Fu-F2 of S. polycystum encompasses significant antibacterial properties and that can be used as a therapeutic agent for controlling the bacterial disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.12.070DOI Listing

Publication Analysis

Top Keywords

sargassum polycystum
8
vivo analysis
8
highest antibacterial
8
antibacterial activity
8
tested pathogens
8
fu-f2
6
antibacterial
5
antibacterial efficacy
4
efficacy fucoidan
4
fucoidan fraction
4

Similar Publications

Sargassum polycystum (S. polycystum) is a brown macroalga with a high phytochemical content, making it a nutritious and bioactive food source. However, information on factors contributing to health benefits, like antioxidants and cytotoxicity, is less explored for Malaysian S.

View Article and Find Full Text PDF

Extraction and characterization of sodium alginate from native Malaysian brown seaweed Sargassum polycystum.

Int J Biol Macromol

December 2024

Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia. Electronic address:

Malaysian seaweed, particularly Sargassum polycystum, has potential for alginate production, yet an extraction protocol for this seaweed remains lacking. This study aimed to optimize the extraction process to maximize alginate yield while characterizing the physicochemical properties of the extracted alginate and its potential applications. An alkali-based extraction method was employed, with key parameters, including alkali concentration, extraction temperature, and time, carefully optimized to yield 30.

View Article and Find Full Text PDF

Free and bound phenolic profiles and antioxidant ability of eleven marine macroalgae from the South China Sea.

Front Nutr

October 2024

Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China.

Marine macroalgae are of broad interest because of their abundant bioactive phenolic compounds. However, only a few previous studies have focused on bound phenolic compounds. In this study, there were significant differences in total phenolic content, total phlorotannin content, total flavonoid content, and antioxidant ability in free and bound forms, as well as in their bound-to-free ratios, among 11 marine macroalgal species from the South China Sea.

View Article and Find Full Text PDF

Cognitive impairments are frequently reported after ischemic strokes. Novel and effective treatments are required. This study aimed to develop a functional ingredient obtained from marine algae and to determine the effect of the extract on antioxidative stress, as well as neuroprotective effects, in a rat model of MCAO-induced ischemic stroke.

View Article and Find Full Text PDF

Water contaminated with arsenic presents serious health risks, necessitating effective and sustainable removal methods. This article proposes a method for removing arsenic from water by impregnating biochar with iron oxide (FeO) from brown seaweed (Sargassum polycystum). After the seaweed biomass was pyrolyzed at 400 °C, iron oxide was added to the biochar to increase its adsorptive sites and surface functional groups, which allowed the binding of arsenic ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!