Moringa oleifera (Moringaceae) is a plant known for having high antioxidant potency, anticancer, hepatoprotective, cardioprotective etc. and many more activities. Besides these, Moringaceae has the potential for attenuating the male sexual dysfunction. Reactive oxygen species/ROS were increased in cryptorchidism and therefore cause infertility by damaging sperm DNA and germ cell apoptosis. There was an increase in heat shock proteins (HSP) in cells, which is affected by heat shock. In the present study, the antioxidant effects of two different doses of M. oleifera Lam Extract (MOLE) on experimentally induced cryptorchid testes of rats was investigated. Forty two male rats (16 days old) were divided into four groups: a normal control group, a cryptorchidism-induced control group and two cryptorchidism-induced groups treated orally with either 400 or 800 mg/kg MOLE for 2 weeks. Our study showed that there were ruptures from interstitial spaces, separation of the germ cells from basal membrane, falling of the germ cells into the lumen, perivascular fibrosis, oedema, increased level of HSP70, apoptosis, malondialdehyde (MDA) and decrease in the level of superoxide dismutase (SOD) after the cryptorchidism. We found that pathological damages, oxidative stress, expression of the HSP70 and germ cell apoptosis were decreased in treated groups with MOLE. In brief, we can say that aqueous extract of M. oleifera reduces the oxidative stress in a unilateral cryptorchidism induced rats, and it might attenuate histopathological damages, HSP expression and germ cell apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.11.091DOI Listing

Publication Analysis

Top Keywords

germ cell
16
cell apoptosis
16
heat shock
12
moringa oleifera
8
oleifera lam
8
lam extract
8
extract mole
8
expression germ
8
experimentally induced
8
induced cryptorchid
8

Similar Publications

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!