Although a number of viability qPCR assays have been reported to selectively detect signals from membrane-intact Legionella pneumophila, the efficient suppression of amplification of DNA from dead membrane-compromised bacteria remains an ongoing challenge. This research aimed at establishing a new oligonucleotide combination that allows for a better exclusion of dead Legionella pneumophila on basis of the mip gene. Propidium monoazide (PMA) was chosen as viability dye. An oligonucleotide combination for the amplification of a 633 bp sequence was established with 100% specificity for different Legionella pneumophila strains compared with 17 other Legionella species tested. Apart from increasing amplicon length, the study aimed at optimizing dye incubation time and temperature. An incubation temperature of 45 °C for 10 min was found optimal. Dye treatment of heat-killed bacteria in the presence of EDTA improved signal suppression, whereas deoxycholate also affected signals from live intact bacteria. Suppression of signals from heat-treated bacteria was found to be approx. twice as efficient compared to a commercial kit, although the detection sensitivity is superior when targeting short amplicons. With a limit of detection of 10 genome copies per PCR well and a 6-log signal reduction of bacteria killed at 80 °C, the assay appears useful for applications where pathogen numbers are not limiting and where the priority is on the distinction between intact and damaged Legionella pneumophila for the evaluation of hygienic risk and of disinfection efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2018.12.003 | DOI Listing |
Microorganisms
December 2024
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
Multiple human and plant pathogens are dispersed and transmitted as bioaerosols (e.g., , SARS-CoV-2, , , spp.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Laboratory of Microbiology, Nova Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
Background: species are the causative agent of Legionnaires' disease and, as ubiquitous waterborne bacteria, are prone to antimicrobial resistance gene (ARG) acquisition and dissemination due to the antimicrobial contamination of natural environments. Given the potential health risks associated with ARGs, it is crucial to assess their presence in the population.
Methods: The ARGs and were detected in 348 samples, isolates, and DNA extracts using conventional PCR.
Front Immunol
January 2025
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the regulator of several hundred cytoprotective and antioxidant genes.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German center for lung research (DZL), Augustenburger Platz 1, 13353 Berlin, Germany. Electronic address:
Diabetes mellitus is associated with an increased risk of pneumonia, often caused by so-called typical and atypical pathogens including Streptoccocus pneumoniae and Legionella pneumophila, respectively. Here, we employed a variety of mouse models to investigate how diabetes influences pulmonary antibacterial immunity. Following intranasal infection with S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!