A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poly (lactic acid) blends: Processing, properties and applications. | LitMetric

Poly (lactic acid) blends: Processing, properties and applications.

Int J Biol Macromol

Center for High Performance Polymer and Composite Systems (CREPEC), Chemical Engineering Department, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.

Published: March 2019

Poly (lactic acid) or polylactide (PLA) is a commercial biobased, biodegradable, biocompatible, compostable and non-toxic polymer that has competitive material and processing costs and desirable mechanical properties. Thereby, it can be considered favorably for biomedical applications and as the most promising substitute for petroleum-based polymers in a wide range of commodity and engineering applications. However, PLA has some significant shortcomings such as low melt strength, slow crystallization rate, poor processability, high brittleness, low toughness, and low service temperature, which limit its applications. To overcome these limitations, blending PLA with other polymers is an inexpensive approach that could also tailor the final properties of PLA-based products. During the last two decades, researchers investigated the synthesis, processing, properties, and development of various PLA-based blend systems including miscible blends of poly l-lactide (PLLA) and poly d-lactide (PDLA), which generate stereocomplex crystals, binary immiscible/miscible blends of PLA with other thermoplastics, multifunctional ternary blends using a third polymer or fillers such as nanoparticles, as well as PLA-based blend foam systems. This article reviews all these investigations and compares the syntheses/processing-morphology-properties interrelationships in PLA-based blends developed so far for various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.12.002DOI Listing

Publication Analysis

Top Keywords

poly lactic
8
lactic acid
8
processing properties
8
pla-based blend
8
blends
5
applications
5
poly
4
acid blends
4
blends processing
4
properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!