Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens.

Bioorg Med Chem

Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420, rue de la Terrasse, Québec, QC G1V 0A6, Canada. Electronic address:

Published: June 2019

Microorganisms embedded in a biofilm are significantly more resistant to antimicrobial agents and the defences of the human immune system, than their planktonic counterpart. Consequently, compounds that can inhibit biofilm formation are of great interest for novel therapeutics. In this study, a screening approach was used to identify novel cyclic dipeptides that have anti-biofilm activity against oral pathogens. Five new active compounds were identified that prevent biofilm formation by the cariogenic bacterium Streptococcus mutans and the pathogenic fungus Candida albicans. These compounds also inhibit the adherence of microorganisms to a hydroxylapatite surface. Further investigations were conducted on these compounds to establish the structure-activity relationship, and it was deduced that the common cleft pattern is required for these molecules to act effectively against biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2018.11.042DOI Listing

Publication Analysis

Top Keywords

novel cyclic
8
cyclic dipeptides
8
oral pathogens
8
compounds inhibit
8
biofilm formation
8
anti-biofilm anti-adherence
4
anti-adherence properties
4
properties novel
4
dipeptides oral
4
pathogens microorganisms
4

Similar Publications

cGAS-STING signaling pathway in lung cancer: Regulation on antitumor immunity and application in immunotherapy.

Chin Med J Pulm Crit Care Med

December 2024

Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai 200433, China.

The innate immune system has a primary role in defending against external threats, encompassing viruses, bacteria, and fungi, thereby playing a pivotal role in establishing robust protection. Recent investigations have shed light on its importance in the progression of tumors, with a particular emphasis on lung cancer. Among the various signaling pathways implicated in this intricate process, the cGAS-STING pathway emerges as a significant participant.

View Article and Find Full Text PDF

This study investigates the synergistic inhibitory effects of combining the stimulator of interferon genes (STING) agonist cyclic diadenylate monophosphate (c-di-AMP) and ginsenoside RG3 on cisplatin (DDP)-resistant gastric cancer (GC) cells. The objective is to identify novel therapeutic targets and offers insights for the clinical management of DDP resistance. Various techniques were employed, including western blot, MTT assay, colony formation assay, scratch assay, transwell assay, tubule formation assay, flow cytometry, Hoechst 33342 fluorescence staining, and in vivo experiments, to investigate the potential mechanisms and effects of the combined application of the STING agonist and ginsenoside RG3 in reversing cisplatin resistance in gastric cancer.

View Article and Find Full Text PDF

Background And Purpose: Chronic kidney disease (CKD) is characterised by inflammation, which can lead to tubular atrophy and fibrosis. The molecular mechanisms are not well understood. In this study, we investigated the functional role of the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signalling in renal inflammation and fibrosis.

View Article and Find Full Text PDF

Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration.

J Neuroinflammation

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.

Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!