The muskox (Ovibos moschatus) is the largest terrestrial herbivore in the Arctic and plays a vital role in the tundra ecosystem [1-4]. Its range, abundance, and genetic diversity have declined dramatically over the past 30,000 years [5]. Two subspecies are recognized, but little is known about the genetic structure and how this relates to the species history. One unresolved question is how and when the species dispersed into its present range, notably the present strongholds in the Canadian archipelago and Greenland. We used genotyping by sequencing (GBS) data from 116 muskox individuals and genotype likelihood-based methods to infer the genetic diversity and distribution of genetic variation in the species. We identified a basal split separating the two recognized subspecies, in agreement with isolation of the muskox into several refugia in the Nearctic around 21,000 years ago [6], near the last glacial maximum (LGM). In addition, we found evidence of strong, successive founder effects inflicting a progressive loss of genetic diversity as the muskox colonized the insular High Arctic from an unknown Nearctic origin. These have resulted in exceptionally low genetic diversity in the Greenlandic populations, as well as extremely high genetic differentiation among regional populations. Our results highlight the need for further investigations of genetic erosion in Nearctic terrestrial mammals, of which several show similar colonization histories in the High Artic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2018.10.054 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute for Applied Mathematics, University of Bonn, Bonn, Germany.
Purpose: To quantify outer retina structural changes and define novel biomarkers of inherited retinal degeneration associated with biallelic mutations in RPE65 (RPE65-IRD) in patients before and after subretinal gene augmentation therapy with voretigene neparvovec (Luxturna).
Methods: Application of advanced deep learning for automated retinal layer segmentation, specifically tailored for RPE65-IRD. Quantification of five novel biomarkers for the ellipsoid zone (EZ): thickness, granularity, reflectivity, and intensity.
ACS Chem Biol
January 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.
Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.
Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!