https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=30528447&retmode=xml&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=g-quadruplex-forming+sequences&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579ba816d9115bd089396&query_key=1&retmode=xml&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
Motivation: In vivo discovery of G-quadruplex-forming sequences would provide the most relevant G-quadruplexes along a genomic DNA or an RNA molecule, however it is difficult to perform due to the small size of G-quadruplexes, the existence of different topologies, and the additional influence of environmental factors and ligands present during experimentation. In vitro discovery on the other hand is not only unable to simulate in vivo conditions but also, is not practical for large sequences due to limited resources. The immediate solution continues to be the computational prediction although, not always in agreement with experimental findings. This is often due to features that are not conventionally accepted for G-quadruplexes such as disrupted G-tracts or extremely long loops.
Results: Here, we propose a novel tool for the discovery of putative G-quadruplexes with better accuracy through consideration of the features of previously missed G-quadruplex-forming sequences. Comparing against a set of experimentally confirmed sequences, a sensitivity as high as 99% and Youden's J-statistics of as high as 0.91 is achieved; an improvement over other computational approaches. More importantly, we showed that the allowance of a single atypical G-tract which includes a mismatched or a bulging non-guanine nucleotide, and a single loop of extreme size benefits the overall prediction.
Availability And Implementation: The python code may be found at http://github.com/odoluca/G4Catchall and the web application at http://homes.ieu.edu.tr/odoluca/G4Catchall.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2018.12.007 | DOI Listing |
Sci Rep
January 2025
Institute of Biophysics, Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.
View Article and Find Full Text PDFBiochemistry
January 2025
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Telomere repeat-binding factor 2 (TRF2) is a key component of the shelterin complex which guards the integrity of the telomere. Most of the TRF2 discussed previously was focused on the telomere, and relatively less is discussed on aspects other than that. It is proved that TRF2 also localizes to other potential G-quadruplex-forming sequences among the whole genome besides the telomere.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
The function of many DNA processing enzymes involves sliding along the double helix or individual DNA strands. Stable secondary structures in the form of G-quadruplexes are difficult for such enzymes to bypass. We used a polymerase stop assay to determine which structural features of the human telomeric and the BCL2 promoter G-quadruplexes can stall progression of the Klenow fragment.
View Article and Find Full Text PDFBiochemistry
December 2024
Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
Targeting G-quadruplexes, which have distinctive structures, to regulate biological reactions in cells has attracted interest due to the many disease-related genes that possess G-quadruplex-forming sequences. To achieve regulation of gene expression using G-quadruplexes, their folding kinetics and time scales should be well understood. However, the G-quadruplex folding kinetics is highly dependent on its nucleotide sequence as well as its surrounding environment, and thus a general folding mechanism is difficult to propose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!