Calcium lactate as an attractive compound to partly replace salt in blue-veined cheese.

J Dairy Sci

VetAgro Sup, 89 Avenue de l'Europe, 63370 Lempdes, France; Université Clermont Auvergne, INRA, Mixed Research Unit on Cheese (UMRF), F-15000 Aurillac, France.

Published: January 2019

In addition to their high sodium content, cheeses are thought to induce an acid load to the body, which is associated with deleterious effects on consumers' health. Our objective was to explore the use of alkalinizing salts in partial substitution of NaCl to reduce both the sodium content and the acid-forming potential of cheese, without altering its sensory properties. Blue-veined cheeses were produced under industrial conditions, using brine salting followed by dry salting with a 4:1 (wt/wt) mixture of calcium lactate:NaCl or calcium citrate:NaCl. Sodium chloride was used in 2 granulometries: coarse (control treatment) and fine, to obtain homogeneous mixtures with the organic salts. Cheeses were then ripened for 56 d. No major appearance defects were observed during ripening. Calcium lactate substitution decreased the Na content of the cheese core by 33%, and calcium citrate substitution increased the citrate content of the cheese core by 410%, respectively, compared with fine NaCl. This study highlighted the substantial role of salt granulometry in sodium content, with the use of the coarse salt reducing the sodium content by 21% compared with fine salt. Sensory profiles showed nonsignificant differences in bitter and salty perceptions of salt-substituted cheeses with calcium lactate and calcium citrate compared with control cheeses. The use of calcium lactate should be considered to reduce the sodium content and improve the nutritional quality of cheeses while maintaining the sensory quality of the products. Alkalinizing organic salts could replace the acidifying salts KCl or CaCl, which are currently used in salt replacement and are not recommended for consumers with renal disease. The method described here should be considered by cheese-making producers to improve the nutritional quality of cheese. Additional nutritional optimization strategies are suggested.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2018-15008DOI Listing

Publication Analysis

Top Keywords

sodium content
20
calcium lactate
16
calcium
8
reduce sodium
8
organic salts
8
content cheese
8
cheese core
8
calcium citrate
8
compared fine
8
cheeses calcium
8

Similar Publications

Gastric ulcer is a common disorder of the digestive system. The combination of turmeric and honey is known to treat stomach ulcers. However, curcumin, an active component in turmeric, has limitations, i.

View Article and Find Full Text PDF

This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.

View Article and Find Full Text PDF

Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.

View Article and Find Full Text PDF

Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.

View Article and Find Full Text PDF

Influence of goethite on the fate of antibiotic (tetracycline) in the aqueous environment: Effect of cationic and anionic surfactants.

Sci Total Environ

January 2025

Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India. Electronic address:

Over the last decades, the release and occurrence of organic pollutants in aquatic systems have become a major global concern due to their bioaccumulation, toxicity, and adverse effects on the ecosystem. Tetracycline (TC), a widely used antibiotic, is often found at high concentrations in the aqueous environment and tends to bind with the natural colloids. Post-COVID-19 pandemic, the release of surfactants in the environment has increased due to the excessive use of washing and cleaning products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!