A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. | LitMetric

Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery.

J Control Release

Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. Electronic address:

Published: January 2019

Nanomedicines are often designed to target and treat solid tumors. Unfortunately, tumor and stroma composed of dense extracellular matrix, abnormal vascular barriers, elevated interstitial fluid pressure, et al., which impede the access and accumulation of nanomedicines into tumors. Strategies to disrupt these deterministic obstacles require a unique combination of promoter drugs and cytotoxic agents to target stroma and tumor simultaneously. Here, we engineered a novel strategy by co-delivery dexamethasone (DEX) and docetaxel (DTX) in the 2-in-1 liposome, namely (DEX + DTX)-Lip, with sequential release property. We proved that the engineered liposomal therapy approach could potentially achieve two objectives in tumor drug delivery: modulate tumor stroma and promote drug penetration and accumulation in tumor. Thus more DTX tenured in intratumoral site to kill tumor cells in a strong way with minimize systemic toxicity. The sequentially released liposomes won excellent antitumor efficacy in multifarious models, including KB, multidrug resistant KBv and metastatic 4 T1 tumor models and low toxicities compared with the combination of free drugs in vivo. Moreover, they demonstrated the potential of prevention tumor cells colonization and anti-metastasis in vivo models. These findings give insights in overcoming the deterministic stroma obstacles and provide a rational strategy to increase antitumor efficacy of combination nanomedicines with practical value.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2018.12.004DOI Listing

Publication Analysis

Top Keywords

tumor
9
drug delivery
8
tumor stroma
8
tumor cells
8
antitumor efficacy
8
enhancing solid
4
solid tumor
4
tumor therapy
4
therapy sequential
4
sequential delivery
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!