Biomechanics in posture space: Properties and relevance of principal accelerations for characterizing movement control.

J Biomech

Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Fürstenweg 185, Austria. Electronic address:

Published: January 2019

Human movements, recorded through kinematic data, can be described by means of principal component analysis (PCA) through a small set of variables representing correlated segment movements. The PC-eigenvectors then form a basis in the associated vector space of postural changes. Similar to 3D movements, the kinematics in this posture space can be quantified through 'principal' positions (PPs), velocities (PVs) and accelerations (PAs). The PAs represent a novel set of variables characterizing neuro-muscular control. The aim of the current technical note was to (i) compare the variance explained by PAs with the variance explained by PPs; (ii) clarify the relationship between PAs and segment accelerations; and (iii) compare variability of the first principal acceleration (PA) with the local dynamic stability (largest Lyapunov exponent, LyE) of the first principal position (PP). A PCA was applied on 3D upper-body positions collected by an Xsens inertial sensor system as nineteen volunteers performed a bimanual repetitive tapping task. The main finding revealed that the PP-explained variance considerably differed from the PA-explained variance, indicating that the latter should be considered when reducing the dimensionality in postural movement analysis through a PCA. Further, the current study formally established that the acceleration curves obtained from differentiating segment positions and from linear combinations of PAs are identical. Finally, a strong correlation, r(17) = 0.92, p < 0.001, was observed between the cycle-to-cycle variability in PA and the LyE calculated for PP, supporting the notion that PA variability and LyE share some of the information they provide about movement control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2018.11.031DOI Listing

Publication Analysis

Top Keywords

posture space
8
analysis pca
8
set variables
8
variance explained
8
pas
5
biomechanics posture
4
space properties
4
properties relevance
4
principal
4
relevance principal
4

Similar Publications

With the escalating demand for exploration within confined spaces, bionic design methodologies have attracted considerable attention from researchers, primarily due to the intrinsic limitations of human access to hazardous environments. However, contemporary bionic robots primarily attain linear motion through the axial radial deformation of their body segments, thereby lacking the upright functionality that is characteristic of these organisms. In response to the limitations associated with current bionic earthworm robots concerning upright capability and stiffness modulation, we propose an innovative bionic robot that incorporates upright functionality and programmable stiffness.

View Article and Find Full Text PDF

Effects of routine postural repositioning on the distribution of lung ventilation and perfusion in mechanically ventilated patients.

Intensive Crit Care Nurs

January 2025

Department of Intensive Care Medicine, Hospital Universitario de La Princesa, Madrid, Spain; Centro de investigación en red CIBERES de enfermedades respiratorias, Instituto de Salud, Carlos III, Madrid, Spain. Electronic address:

Objectives: To analyse the effects on respiratory function, lung volume and the regional distribution of ventilation and perfusion of routine postural repositioning in mechanically ventilated critically ill patients.

Methods: Prospective descriptive physiological study. We evaluated gas-exchange, lung mechanics, and Electrical Impedance Tomography (EIT) determined end-expiratory lung impedance and regional ventilation and perfusion distribution in five body positions: supine-baseline (S1); first lateralisation at 30° (L1); second supine position (S2), second contralateral lateralisation (L2) and third final supine position (S3).

View Article and Find Full Text PDF

Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.

View Article and Find Full Text PDF

Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations.

Vision (Basel)

January 2025

Centre Gilles Gaston Granger, UMR 7304 Centre National de la Recherche Scientifique, Aix Marseille Université, 13621 Aix-en-Provence, France.

The appearance of an object triggers an orienting gaze movement toward its location. The movement consists of a rapid rotation of the eyes, the saccade, which is accompanied by a head rotation if the target eccentricity exceeds the oculomotor range and by a slow eye movement if the target moves. Completing a previous report, we explain the numerous points that lead to questioning the validity of a one-to-one correspondence relation between measured physical values of gaze or head orientation and neuronal activity.

View Article and Find Full Text PDF

Skeletal muscle (SKM) has crucial roles in locomotor activity and posture within the body and also functions have been recognized as an actively secretory organ. Numerous bioactive molecules are secreted by SKM and transported by extracellular vesicles (EVs), a novel class of mediators of communication between cells and organs that contain various types of cargo molecules including lipids, proteins and nucleic acids. SKM-derived EVs (SKM-EVs) are intercellular communicators with significant roles in the crosstalk between SKM and other organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!