Over the last two decades, it has become increasingly clear that a large fraction of the human proteome is intrinsically disordered or contains disordered segments of significant length. These intrinsically disordered proteins (IDPs) play important regulatory roles throughout biology, underlining the importance of understanding their conformational behavior and interaction mechanisms at the molecular level. Here we review recent progress in the NMR characterization of the structure and dynamics of IDPs in various functional states and environments. We describe the complementarity of different NMR parameters for quantifying the conformational propensities of IDPs in their isolated and phosphorylated states, and we discuss the challenges associated with obtaining structural models of dynamic protein-protein complexes involving IDPs. In addition, we review recent progress in understanding the conformational behavior of IDPs in cell-like environments such as in the presence of crowding agents, in membrane-less organelles and in the complex environment of the human cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pnmrs.2018.07.001 | DOI Listing |
Curr Opin Struct Biol
January 2025
Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123 Uppsala, Sweden. Electronic address:
Protein-protein associations are often mediated by an intrinsically disordered protein region interacting with a folded domain in a coupled binding and folding reaction. Classic physical organic chemistry approaches together with structural biology have shed light on mechanistic aspects of such reactions. Further insight into general principles may be obtained by interpreting the results through an evolutionary lens.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Max-Planck-Institut für Immunbiologie und Epigenetik (MPI-IE), Stübeweg 51, 79108 Freiburg im Breisgau, Germany.
Intrinsically disordered regions are found in most eukaryotic proteins and are enriched with positively and negatively charged residues. While it is often convenient to assume that these residues follow their model-compound p values, recent work has shown that local charge effects (charge regulation) can upshift or downshift side chain p values with major consequences for molecular function. Despite this, charge regulation is rarely considered when investigating disordered regions.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.
Background: E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology.
View Article and Find Full Text PDFNature
January 2025
Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!