Advanced dose calculation algorithms in lung cancer radiotherapy: Implications for SBRT and locally advanced disease in deep inspiration breath hold.

Phys Med

Department of Oncology, Section of Radiotherapy, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2100 Copenhagen, Denmark; Manchester Cancer Research Centre, Division of Cancer Science, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK; Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK. Electronic address:

Published: December 2018

Purpose: Evaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).

Methods: For 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.

Results: Lung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group). In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV. In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4-2.7 Gy. No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.

Conclusions: AAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2018.11.013DOI Listing

Publication Analysis

Top Keywords

locally advanced
20
dose calculation
12
lung cancer
12
calculation algorithms
8
cancer radiotherapy
8
sbrt locally
8
deep inspiration
8
inspiration breath
8
breath hold
8
advanced lung
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!