Flying animals need continual sensory feedback about their body position and orientation for flight control. The visual system provides essential but slow feedback. In contrast, mechanosensory channels can provide feedback at much shorter timescales. How the contributions from these two senses are integrated remains an open question in most insect groups. In Diptera, fast mechanosensory feedback is provided by organs called halteres and is crucial for the control of rapid flight manoeuvres, while vision controls manoeuvres in lower temporal frequency bands. Here, we have investigated the visual-mechanosensory integration in the hawkmoth They represent a large group of insects that use Johnston's organs in their antennae to provide mechanosensory feedback on perturbations in body position. Our experiments show that antennal mechanosensory feedback specifically mediates fast flight manoeuvres, but not slow ones. Moreover, we did not observe compensatory interactions between antennal and visual feedback.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6303104PMC
http://dx.doi.org/10.7554/eLife.37606DOI Listing

Publication Analysis

Top Keywords

mechanosensory feedback
12
flight control
8
body position
8
flight manoeuvres
8
feedback
7
roles vision
4
vision antennal
4
antennal mechanoreception
4
mechanoreception hawkmoth
4
flight
4

Similar Publications

Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.

View Article and Find Full Text PDF

Comprehensive analysis of the C. elegans connectome reveals novel circuits and functions of previously unstudied neurons.

PLoS Biol

December 2024

Department of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America.

Despite decades of research on the Caenorhabditis elegans nervous system based on an anatomical description of synaptic connectivity, the circuits underlying behavior remain incompletely described and the functions of many neurons are still unknown. Updated and more complete chemical and gap junction connectomes of both adult sexes covering the entire animal including the muscle end organ have become available recently. Here, these are analyzed to gain insight into the overall structure of the connectivity network and to suggest functions of individual neuron classes.

View Article and Find Full Text PDF

An animal's current behavior influences its response to sensory stimuli, but the molecular and circuit-level mechanisms of this context-dependent decision-making are not well understood. are less likely to respond to a mechanosensory stimulus by reversing if the stimuli is received while the animal turns. Inhibitory feedback from turning associated neurons are needed for this gating.

View Article and Find Full Text PDF

A Drosophila computational brain model reveals sensorimotor processing.

Nature

October 2024

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.

Article Synopsis
  • - The assembly of the Drosophila melanogaster brain connectome, featuring over 125,000 neurons and 50 million synaptic connections, serves as a framework to study sensory processing across the brain.
  • - A computational model simulating the fly's brain was created to investigate the neural circuits involved in feeding and grooming behaviors, accurately predicting neuron responses to taste and motor activity.
  • - The model also extends to mechanosensory circuits, confirming its ability to predict neuronal activation patterns and providing valuable insights into how the brain processes different sensory stimuli for behaviors.
View Article and Find Full Text PDF

Serotonergic modulation of swallowing in a complete fly vagus nerve connectome.

Curr Biol

October 2024

Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany. Electronic address:

How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!