Isochronal superposition and density scaling of the -relaxation from pico- to millisecond.

J Chem Phys

Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark.

Published: December 2018

The relaxation dynamics in two van der Waals bonded liquids and one hydrogen-bonding molecular liquid are studied as a function of pressure and temperature by incoherent neutron scattering using simultaneous dielectric spectroscopy. The dynamics are studied in a range of alpha relaxation times from pico- to milliseconds, primarily in the equilibrium liquid state. In this range, we find that isochronal superposition and density scaling work not only for the two van der Waals liquids but also for the hydrogen-bonding liquid, though the density scaling exponent is much smaller for the latter. Density scaling and isochronal superposition are seen to break down for intra-molecular dynamics when it is separated in time from the alpha relaxation, in close agreement with previous observations from molecular dynamics simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5055665DOI Listing

Publication Analysis

Top Keywords

density scaling
16
isochronal superposition
12
superposition density
8
van der
8
der waals
8
liquids hydrogen-bonding
8
alpha relaxation
8
density
4
scaling
4
scaling -relaxation
4

Similar Publications

Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).

View Article and Find Full Text PDF

Bulk thermally conductive polyethylene as a thermal interface material.

Mater Horiz

January 2025

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.

As the demand for high-power-density microelectronics rises, overheating becomes the bottleneck that limits device performance. In particular, the heterogeneous integration architecture can magnify the importance of heat dissipation and necessitate electrical insulation between critical junctions to prevent dielectric breakdown. Consequently, there is an urgent need for thermal interface materials (TIMs) with high thermal conductivity and electrical insulation to address this challenge.

View Article and Find Full Text PDF

There remains a scarcity of studies to evaluate the treatment effect of electroconvulsive therapy (ECT). Functional near-infrared spectroscopy (fNIRS) offers a cost-effective method to measure cerebral hemodynamics. This study used fNIRS to evaluate the effect of ECT in patients suffering from schizophrenia or bipolar disorder (manic phase).

View Article and Find Full Text PDF

A recyclability perspective is essential in the sustainable development of energy storage devices, such as lithium-ion batteries (LIBs), but the development of LIBs prioritizes battery capacity and energy density over recyclability, and hence, the recycling methods are complex and the recycling rate is low compared to other technologies. To improve this situation, the underlying battery design must be changed and the material choices need to be made with a sustainable mindset. A suitable and effective approach is to utilize bio-materials, such as paper and electrode composites made from graphite and cellulose, and adopt already existing recycling methods connected to the paper industry.

View Article and Find Full Text PDF

The e-STROKE study is a prospective, multicenter observational study designed to assess the impact of various CT parameters (including e-ASPECT, CT perfusion (CTP), collateral flow status, and the size and location of the ischemic lesion) on the clinical outcomes of patients with ischemic stroke, as evaluated by the modified Rankins Scale (mRS) three months post-stroke. This study also aims to investigate whether the use of multimodal CT imaging increases the number of patients eligible for recanalization therapy. The analysis will integrate data from the RES-Q registry and radiological data from the e-STROKE system provided by Brainomix Ltd.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!