Conformational Analysis of n→π* Interactions in Collagen Triple Helix Models.

J Phys Chem B

Department of Chemistry , Virginia Tech , Blacksburg Virginia 24061 , United States.

Published: January 2019

Ab initio calculations of three models of collagen at positions Pro-Pro-Gly (1), Pro-Gly-Pro (2), and Gly-Pro-Pro (3) were performed to assess the conformational variation of n→π* contributions to the stability of the collagen triple helix. Full conformational analyses by relaxed potential-energy scans of the Ψ dihedral angle of the central residue in models 1, 2, and 3 revealed the presence of several n→π* interactions. In model 2, with Gly as the central residue, both the Φ and Ψ dihedral angles of Gly were scanned. Most minima of each model contained one or two n→π* interactions, with pyramidalization at the π* carbon. We also observed pyramidalization at the n→π* donor amide nitrogens. Minima with hydrogen-bond or non-native n→π* interactions compete with the collagen stabilizing n→π* interactions. The collagen-like n→ re-π* conformation was found as the global minimum only in model 3. The global minimum of 1 had a 5-membered ring hydrogen bond with an additional weak n→ si-π* interaction. The global minimum of 2 was in the extended conformation. We predict that the n→π* interactions found in native collagen, while individually small, cumulatively contribute to the stability of the triple helix conformation of collagen.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b08384DOI Listing

Publication Analysis

Top Keywords

n→π* interactions
24
triple helix
12
global minimum
12
n→π*
8
collagen triple
8
central residue
8
interactions
6
collagen
6
conformational analysis
4
analysis n→π*
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!