Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flavonoids are major polyphenol compounds in plants and contribute substantially to the health-promoting benefits of fruit and vegetables. Peach is rich in polyphenols with flavonols as the main flavonoids. To investigate the regulation of flavonol biosynthesis in peach fruit, two R2R3-MYB transcription factor (TF) genes, PpMYB15 and PpMYBF1, were isolated and characterized. Sequence analysis revealed that the PpMYB15 and PpMYBF1 proteins are members of the flavonol clade of the R2R3-MYB family. Real-time quantitative PCR analysis showed that PpMYB15 and PpMYBF1 transcript levels correlated well with the flavonol content and the expression of flavonol synthase ( PpFLS1) in different fruit samples. Dual-luciferase assays indicated that both PpMYB15 and PpMYBF1 could trans-activate promoters of flavonoid biosynthesis genes, including chalcone synthase ( PpCHS1), chalcone isomerase ( PpCHI1), flavanone 3-hydroxylase ( PpF3H), and PpFLS1. Transient overexpression of 35S::PpMYB15 or 35S::PpMYBF1 both triggered flavonol biosynthesis but not anthocyanin and proanthocyanidin biosynthesis in tobacco leaves. In transgenic tobacco flowers, overexpression of 35S::PpMYB15 or 35S::PpMYBF1 caused a significant increase in flavonol levels and significantly reduced anthocyanin accumulation, resulting in pale-pink or pure white flowers. These results suggest that PpMYB15 and PpMYBF1 are functional flavonol-specific positive regulators in peach fruit and are important candidates for biotechnological engineering flavonol biosynthesis in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b04810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!