PrFeMC Versus PrFeMC (M = Si, P; M' = Si, Ge, Sn): Competing Intermetallic Carbides Grown from a Pr/Ni Flux.

Inorg Chem

Department of Chemistry and Biochemistry , Florida State University, Tallahassee , Florida 32306 , United States.

Published: January 2019

Reactions of silicon, carbon, and iron in a low-melting flux mixture of praseodymium and nickel produced two competing intermetallic compounds. PrFeSiC has a new structure type in tetragonal space group P4/ mmm ( a = 15.584(2) Å, c = 11.330(1) Å, Z = 1) that features trigonal planar FeC units that share corners to form a framework of cylindrical channels encompassing a network of silicon-centered praseodymium clusters. Slight variation of reactant ratio and heating profile produced PrFeSiC instead; this compound has the previously reported cubic LaFeSnC structure type. Identical Pr/Si clusters and FeC subunit motifs are found in both structure types. In addition to reactant ratio and heating profile, size effects play a role in determining which structure forms. Replacing silicon with smaller phosphorus atoms produces only the tetragonal structure; replacement with larger elements (M = Ge, Sn) yields only cubic PrFeMC. Magnetic susceptibility measurements on single crystals of PrFeSiC indicate antiferromagnetic ordering of the Pr moments below 17 K and no magnetic moment on iron atoms. The behavior of PrFeSiC is more complex, revealing magnetic contributions from both Pr and Fe atoms and possible spin frustration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02741DOI Listing

Publication Analysis

Top Keywords

competing intermetallic
8
structure type
8
reactant ratio
8
ratio heating
8
heating profile
8
structure
5
prfemc versus
4
versus prfemc
4
prfemc competing
4
intermetallic carbides
4

Similar Publications

Roll bonding of aluminum/magnesium laminates combines the good corrosion resistance of aluminum alloys with the beneficial mechanical properties of magnesium alloys. We studied the microstructure of aluminum Al-1051/AZ31 magnesium laminates fabricated by the roll-bonding process. The fabricated laminates were investigated in the as-fabricated condition and after subsequent stress relief annealing treatment at temperatures ranging from 200 °C to 400 °C.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

This research explored the impact of age-hardening treatment on the mechanical response and electrical resistivity of copper-clad AA6063 alloy bimetallic wire, with a focus on microstructural analysis and interface characterization. In this study, AA6063 alloy wire was inserted into an oxygen-free high conductivity copper tube, and a bimetallic wire was fabricated through a wire drawing process that reduced the cross-sectional area in 13 stages. The bimetallic wire underwent a series of thermo-mechanical treatments, including various combinations of wire drawing, solution heat treatment, and artificial aging.

View Article and Find Full Text PDF

Highly printable, strong, and ductile ordered intermetallic alloy.

Nat Commun

January 2025

Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!