Members of the orthosomycin family of natural products are decorated polysaccharides with potent antibiotic activity and complex biosynthetic pathways. The defining feature of the orthosomycins is an orthoester linkage between carbohydrate moieties that is necessary for antibiotic activity and is likely formed by a family of conserved oxygenases. Everninomicins are octasaccharide orthosomycins produced by Micromonospora carbonacea that have two orthoester linkages and a methylenedioxy bridge, three features whose formation logically requires oxidative chemistry. Correspondingly, the evd gene cluster encoding everninomicin D encodes two monofunctional nonheme iron, α-ketoglutarate-dependent oxygenases and one bifunctional enzyme with an N-terminal methyltransferase domain and a C-terminal oxygenase domain. To investigate whether the activities of these domains are linked in the bifunctional enzyme EvdMO1, we determined the structure of the N-terminal methyltransferase domain to 1.1 Å and that of the full-length protein to 3.35 Å resolution. Both domains of EvdMO1 adopt the canonical folds of their respective superfamilies and are connected by a short linker. Each domain's active site is oriented such that it faces away from the other domain, and there is no evidence of a channel connecting the two. Our results support EvdMO1 working as a bifunctional enzyme with independent catalytic activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231510 | PMC |
http://dx.doi.org/10.1021/acs.biochem.8b00836 | DOI Listing |
Int J Mol Sci
December 2024
Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).
View Article and Find Full Text PDFbioRxiv
December 2024
Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK.
The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) family of proteins are bifunctional enzymes that are of clinical relevance because of their roles in regulating glycolysis in insulin sensitive tissues and cancer. Here, we sought to express recombinant PFKFB2 and develop a robust protocol to measure its kinase activity. These studies resulted in the unexpected finding that bacterially expressed PFKFB2 is phosphorylated on Ser483 but is not a result of autophosphorylation.
View Article and Find Full Text PDFCell Chem Biol
December 2024
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:
Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.
View Article and Find Full Text PDFmBio
December 2024
Infection Program, Department of Microbiology, Monash University, Biomedicine Discovery Institute, Melbourne, Victoria, Australia.
is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections. The increasing development of antibiotic resistance in this organism is a global health concern. The clinical isolate AB307-0294 produces a type VI secretion system (T6SS) that delivers three antibacterial effector proteins that give this strain a competitive advantage against other bacteria in polymicrobial environments.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Jiangsu, 214122, China.
Dysfunction in the SHP1 enzyme can cause cancers and many diseases, so it is of great significance to develop novel small molecule SHP1 inhibitors. Through continuous monitoring of metabolic and targeted processes of SHP1 inhibitors in real-time, we can evaluate the effectiveness and toxicity of the inhibitors, further optimize drug design, and explore SHP1 biology. Indoloquinoxaline is an important class of N-containing heterocycle, which has been studied and applied in the pharmacological field and in optoelectronic materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!