Fast, efficient, and inexpensive methods for delivering functional nucleic acids to primary human cell types are needed to advance regenerative medicine and cell therapies. Plasmid-based gene editing (such as with CRISPR-Cas9) can require the delivery of plasmids that are large (∼9.5-13 kbp) in comparison to common reporter plasmids (∼5-8 kbp). To develop more efficient plasmid delivery vehicles, we investigated the effect of plasmid size on the transfection of primary human dermal fibroblasts (HDFs) and induced pluripotent stem cells (iPSCs) using a heparin-treated trehalose-containing polycation (Tr4-heparin). Transfections with 4.7 kbp to 10 kbp plasmids exhibited high rates of polyplex internalization with both plasmid sizes. However, transfection with the large plasmid was nearly eliminated in HDFs and significantly reduced in iPSCs. Molecular additives were used to probe intracellular barriers to transfection. Chloroquine treatments were used to destabilize endosomes, and dexamethasone and thymidine were used to destabilize the nuclear envelope. Destabilizing the nuclear envelope resulted in significantly increased large-plasmid-transfection, indicating that nuclear localization may be more difficult for large plasmids. To demonstrate the potential clinical utility of this formulation, HDFs and iPSCs were treated with to dexamethasone-Tr4-heparin polyplexes encoding dCas9-VP64, synthetic transcription activator, targeted to collagen type VII. These transfections enhanced collagen expression in HDFs and iPSCs by 5- and 20-fold, respectively, compared to an untransfected control and were the more effective than the Lipofectamine 2000 control. Functional plasmid transfection efficiency can be significantly improved by nuclear destabilization, which could lead to improved development of nonviral vehicles for ex vivo CRISPR-Cas9 gene editing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.8b00760 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.
View Article and Find Full Text PDFNurs Leadersh (Tor Ont)
June 2025
Director and Professor, School of Nursing Assistant Dean, Research, Faculty of Health Dalhousie University Affiliate Scientist, Nova Scotia Health Affiliate Scientist, Maritime SPOR Support Unit Halifax, NS Co-Director, Canadian Centre for Advanced Practice Nursing Research Hamilton, ON.
and along with it, the first issue of the () for the year 2025. We begin the year with significant and persistent health and healthcare challenges. Recently released data from the Canadian Institute for Health Information indicate that 5.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.
The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!