Point-of-Care Tissue Analysis Using Miniature Mass Spectrometer.

Anal Chem

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument , Tsinghua University, Beijing 100084 , China.

Published: January 2019

The combination of direct sampling ionization and miniature mass spectrometer presents a promising technical pathway of point-of-care analysis in clinical applications. In this work, a miniature mass spectrometry system was used for analysis of tissue samples. Direct tissue sampling coupled with extraction spray ionization was used with a home-built miniature mass spectrometer, Mini 12. Lipid species in tissue samples were well profiled in rat brain, kidney, and liver in a couple of minutes. By incorporating a photochemical (Paternò-Büchi) reaction, fast identification of lipid C═C location was realized. Relative quantitation of the lipid C═C isomer was performed by calculating the intensity ratio C═C diagnostic product ions, by which FA 18:1 (Δ9)/FA 18:1 (Δ11) was found to change significantly in mouse cancerous breast tissue samples. Accumulation of 2-hydroxylglutarate in human glioma samples, not in normal brains, can also be easily identified for rapid diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110088PMC
http://dx.doi.org/10.1021/acs.analchem.8b04935DOI Listing

Publication Analysis

Top Keywords

miniature mass
16
mass spectrometer
12
tissue samples
12
lipid c═c
8
point-of-care tissue
4
tissue analysis
4
miniature
4
analysis miniature
4
mass
4
spectrometer combination
4

Similar Publications

Herein, a novel and simple electrospray (ES) printing technique was developed for the fabrication of ultrathin graphene layers with precisely controlled nanometer-scale thickness, where graphene oxide (GO) was electrosprayed on wafers and subsequently chemically reduced into reduced GO (rGO). Utilizing that technique, we prepared ultrathin rGO in-plane graphene field-effect transistor (GFET)-based biosensors coupled with a portable prototype measuring system for point-of-care detection of pathogens. We illustrate the use of such prepared GFETs to detect COVID-19, using the SARS-CoV-2 nucleocapsid protein antigen (N-protein) and genomic viral RNA as detection targets.

View Article and Find Full Text PDF

Native MS (nMS) is a key structural biology technique that makes it possible to study intact proteins and their interactions. Unfortunately, non-volatile salts are incompatible with nMS, which demands a laborious desalting procedure. Non-denaturing size-exclusion chromatography (SEC) allows both rapid desalting and separation and has previously been explored for nMS automation.

View Article and Find Full Text PDF

We present a resource-efficient method for automated sample preparation, designated to facilitate high-throughput analysis of microcystins and nodularin-R. These cyanotoxins, commonly associated with harmful algal blooms, are monitored to ensure the safety of drinking water and recreational water bodies. The method utilizes a liquid handling platform to flexibly process between 1 and 96 samples within one hour for subsequent LC-MS analysis, requiring only 5 mL of sample for triplicate analysis.

View Article and Find Full Text PDF

Chikungunya (CHIKV) and dengue (DENV) are mosquito-borne viruses that cause severe epidemics, often in remote regions. A limitation to our understanding of these pathogens is the difficulty of performing assays of the cellular immune response. To fill this gap, we developed a novel miniaturized automated system capable of processing 250 μl of whole blood for high-throughput cellular analysis.

View Article and Find Full Text PDF

Human breath analysis; Clinical application and measurement: An overview.

Biosens Bioelectron

December 2024

Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia; School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia. Electronic address:

Human breath has been recognized as a complex yet predictive mixture of volatile organic compounds (VOCs) and inorganic gas species that can be utilized to non-invasively diagnose common diseases. Current laboratory techniques such as gas chromatography/mass spectrometry (GC/MS) and high-performance liquid chromatography (HPLC), are capable of VOC detection down to ppm concentrations. However, these methods are expensive, non-portable, require pre-processing of the exhaled VOCs, and expert operators, making them unsuitable for wide-spread use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!