Materials and Designs for Power Supply Systems in Skin-Interfaced Electronics.

Acc Chem Res

Department of Materials Science and Engineering , Northwestern University, Evanston , Illinois 60208 , United States.

Published: January 2019

Recent advances in materials chemistry and composite materials design establish the foundations for classes of electronics with physical form factors that bridge the gap between soft biological organisms and rigid microsystems technologies. Skin-interfaced platforms of this type have broad utility in continuous clinical-grade monitoring of physiological status, with the potential to significantly lower the cost and increase the efficacy of modern health care. Development of materials and device designs for power supply systems in this context is critically important, and it represents a rapidly expanding focus of research in the chemical sciences. Reformulating conventional technologies into biocompatible platforms and co-integrating them into skin-interfaced systems demand innovative approaches in materials chemistry and engineering. In terms of physical properties, the resulting devices must offer levels of flexibility, stretchability, thickness, and mass density that approach those of the epidermis itself, while maintaining operational characteristics and mechanical durability for practical use outside of a laboratory or hospital. While nearly all commercially available components for energy storage and harvesting are rigid and planar, recent research provides options in devices that are biocompatible not only at the level of the constituent materials but also in terms of the mechanics and geometrical forms, with resulting capabilities for establishing stable, nonirritating, intimate interfaces to the skin for extended periods of time. This Account highlights the range of materials choices and associated device architectures for skin-interfaced power supply systems. The Account begins with an overview of the main design strategies, ranging from one-, two-, and three-dimensional engineered composite structures to active materials that are intrinsically stretchable. The following sections describe a broad collection of devices based on these concepts, starting with batteries and supercapacitors for storage and then photovoltaic, piezoelectric, triboelectric, and thermoelectric devices for harvesting. Representative examples highlight recent advances, with a focus on the relationship between the materials and the performance during deformation. A final section discusses the challenges and opportunities in this area. Continued efforts in fundamental chemical research will be critically important to progress in this emerging field of technology. For example, understanding the mechanisms by which physical deformations affect the intrinsic materials properties and the system-level performance requires further study. The development of stretchable and biocompatible solid electrolytes with high ionic conductivity is an example of a specific area of interest for energy storage devices. Here and in other storage and harvesting systems advanced materials are needed to provide robust barriers to environmental factors. Work to address these and other interesting challenges will demand multidisciplinary collaborations between chemists, materials scientists, bioengineers, and clinicians, all oriented toward establishing the foundations for technologies that could help to address global grand challenges in human health care.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.8b00486DOI Listing

Publication Analysis

Top Keywords

materials
12
power supply
12
supply systems
12
designs power
8
materials chemistry
8
health care
8
energy storage
8
storage harvesting
8
systems
5
devices
5

Similar Publications

Kinetic Control of Self-Assembly Pathway in Dual Dynamic Covalent Polymeric Systems.

Angew Chem Int Ed Engl

January 2025

East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.

Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Introduction: Staphylococcus aureus is a gram-positive, facultatively anaerobic coccus capable of causing infectious diseases in animals and humans. Especially dangerous are multidrug-resistant forms with poor or even no response to available treatments.

Objectives: The study aimed to verify the effect of enzybiotics on the healing of S.

View Article and Find Full Text PDF

Objectives: Staphylococcus aureus is part of the human microbiota, but at the same time, it is capable of causing a wide range of diseases. Due to the ever-increasing resistance to antimicrobial agents and the existence of methicillin-resistant S. aureus (MRSA) strains, there is a real possibility of carrying even this resistant bacterium, which can subsequently cause a severe infection.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!