Isolated π-Interaction Sites in Mesoporous MOF Backbone for Repetitive and Reversible Dynamics in Water.

ACS Appl Mater Interfaces

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , China.

Published: January 2019

We report the introduction of π-interaction sites into a series of chemically robust metal-organic frameworks (MOFs), MOF-526, -527, and -528, with progressively increased pore size, 1.9-3.7 nm, and the inclusion and release of large organic molecules in water. The mesopores in these MOFs lead to fast adsorption kinetics, whereas the π-interaction between isolated porphyrin units in the MOF backbone and polycyclic structure of the organic guests provides excellent reversibility. Specifically, seven large organic dyes were quantitatively captured by the porphyrin units of these MOFs in a 2:1 molar ratio, exhibiting unprecedented kinetics for MOFs [e.g., 4.54 × 10 L/mol for rhodamine B] at an extremely low concentration (10 ppm) in water. Rotational-echo double-resonance NMR experiments revealed that the distance between the guest molecules and porphyrin units in MOFs was in the range from 3.24 to 3.37 Å, confirming the specific π-interaction. Repetitive and reversible dynamics was achieved in these MOFs for 10 complete inclusion-release cycles without any decay in performance, which is ideally suited for the removal and recycle of large polycyclic organic molecules from water. The performance of MOF-526 rivals that of state-of-the-art carbon and polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b19211DOI Listing

Publication Analysis

Top Keywords

porphyrin units
12
π-interaction sites
8
mof backbone
8
repetitive reversible
8
reversible dynamics
8
large organic
8
organic molecules
8
molecules water
8
units mofs
8
mofs
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!